Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
NormalEstimator.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 5k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * NormalEstimator.java
- * Copyright (C) 1999 Len Trigg
- *
- */
- package weka.estimators;
- import java.util.*;
- import weka.core.*;
- /**
- * Simple probability estimator that places a single normal distribution
- * over the observed values.
- *
- * @author Len Trigg (trigg@cs.waikato.ac.nz)
- * @version $Revision: 1.5 $
- */
- public class NormalEstimator implements Estimator {
- /** The sum of the weights */
- private double m_SumOfWeights;
- /** The sum of the values seen */
- private double m_SumOfValues;
- /** The sum of the values squared */
- private double m_SumOfValuesSq;
- /** The current mean */
- private double m_Mean;
- /** The current standard deviation */
- private double m_StandardDev;
- /** The precision of numeric values ( = minimum std dev permitted) */
- private double m_Precision;
- /**
- * Round a data value using the defined precision for this estimator
- *
- * @param data the value to round
- * @return the rounded data value
- */
- private double round(double data) {
- return Math.rint(data / m_Precision) * m_Precision;
- }
- // ===============
- // Public methods.
- // ===============
- /**
- * Constructor that takes a precision argument.
- *
- * @param precision the precision to which numeric values are given. For
- * example, if the precision is stated to be 0.1, the values in the
- * interval (0.25,0.35] are all treated as 0.3.
- */
- public NormalEstimator(double precision) {
- m_Precision = precision;
- // Allow at most 3 sd's within one interval
- m_StandardDev = m_Precision / (2 * 3);
- }
- /**
- * Add a new data value to the current estimator.
- *
- * @param data the new data value
- * @param weight the weight assigned to the data value
- */
- public void addValue(double data, double weight) {
- if (weight == 0) {
- return;
- }
- data = round(data);
- m_SumOfWeights += weight;
- m_SumOfValues += data * weight;
- m_SumOfValuesSq += data * data * weight;
- if (m_SumOfWeights > 0) {
- m_Mean = m_SumOfValues / m_SumOfWeights;
- double stdDev = Math.sqrt(Math.abs(m_SumOfValuesSq
- - m_Mean * m_SumOfValues)
- / m_SumOfWeights);
- // If the stdDev ~= 0, we really have no idea of scale yet,
- // so stick with the default. Otherwise...
- if (stdDev > 1e-10) {
- m_StandardDev = Math.max(m_Precision / (2 * 3),
- // allow at most 3sd's within one interval
- stdDev);
- }
- }
- }
- /**
- * Get a probability estimate for a value
- *
- * @param data the value to estimate the probability of
- * @return the estimated probability of the supplied value
- */
- public double getProbability(double data) {
- data = round(data);
- double zLower = (data - m_Mean - (m_Precision / 2)) / m_StandardDev;
- double zUpper = (data - m_Mean + (m_Precision / 2)) / m_StandardDev;
- double pLower = Statistics.normalProbability(zLower);
- double pUpper = Statistics.normalProbability(zUpper);
- return pUpper - pLower;
- }
- /**
- * Display a representation of this estimator
- */
- public String toString() {
- return "Normal Distribution. Mean = " + Utils.doubleToString(m_Mean, 4)
- + " StandardDev = " + Utils.doubleToString(m_StandardDev, 4)
- + " WeightSum = " + Utils.doubleToString(m_SumOfWeights, 4)
- + " Precision = " + m_Precision + "n";
- }
- /**
- * Main method for testing this class.
- *
- * @param argv should contain a sequence of numeric values
- */
- public static void main(String [] argv) {
- try {
- if (argv.length == 0) {
- System.out.println("Please specify a set of instances.");
- return;
- }
- NormalEstimator newEst = new NormalEstimator(0.01);
- for(int i = 0; i < argv.length; i++) {
- double current = Double.valueOf(argv[i]).doubleValue();
- System.out.println(newEst);
- System.out.println("Prediction for " + current
- + " = " + newEst.getProbability(current));
- newEst.addValue(current, 1);
- }
- } catch (Exception e) {
- System.out.println(e.getMessage());
- }
- }
- }