Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
NDConditionalEstimator.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 4k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * NDConditionalEstimator.java
- * Copyright (C) 1999 Len Trigg
- *
- */
- package weka.estimators;
- import java.util.*;
- import weka.core.*;
- /**
- * Conditional probability estimator for a numeric domain conditional upon
- * a discrete domain (utilises separate normal estimators for each discrete
- * conditioning value).
- *
- * @author Len Trigg (trigg@cs.waikato.ac.nz)
- * @version $Revision: 1.4 $
- */
- public class NDConditionalEstimator implements ConditionalEstimator {
- /** Hold the sub-estimators */
- private NormalEstimator [] m_Estimators;
- /**
- * Constructor
- *
- * @param numCondSymbols the number of conditioning symbols
- * @param precision the precision to which numeric values are given. For
- * example, if the precision is stated to be 0.1, the values in the
- * interval (0.25,0.35] are all treated as 0.3.
- */
- public NDConditionalEstimator(int numCondSymbols, double precision) {
- m_Estimators = new NormalEstimator [numCondSymbols];
- for(int i = 0; i < numCondSymbols; i++) {
- m_Estimators[i] = new NormalEstimator(precision);
- }
- }
- /**
- * Add a new data value to the current estimator.
- *
- * @param data the new data value
- * @param given the new value that data is conditional upon
- * @param weight the weight assigned to the data value
- */
- public void addValue(double data, double given, double weight) {
- m_Estimators[(int)given].addValue(data, weight);
- }
- /**
- * Get a probability estimator for a value
- *
- * @param data the value to estimate the probability of
- * @param given the new value that data is conditional upon
- * @return the estimator for the supplied value given the condition
- */
- public Estimator getEstimator(double given) {
- return m_Estimators[(int)given];
- }
- /**
- * Get a probability estimate for a value
- *
- * @param data the value to estimate the probability of
- * @param given the new value that data is conditional upon
- * @return the estimated probability of the supplied value
- */
- public double getProbability(double data, double given) {
- return getEstimator(given).getProbability(data);
- }
- /**
- * Display a representation of this estimator
- */
- public String toString() {
- String result = "ND Conditional Estimator. "
- + m_Estimators.length + " sub-estimators:n";
- for(int i = 0; i < m_Estimators.length; i++) {
- result += "Sub-estimator " + i + ": " + m_Estimators[i];
- }
- return result;
- }
- /**
- * Main method for testing this class.
- *
- * @param argv should contain a sequence of pairs of integers which
- * will be treated as numeric, symbolic.
- */
- public static void main(String [] argv) {
- try {
- if (argv.length == 0) {
- System.out.println("Please specify a set of instances.");
- return;
- }
- int currentA = Integer.parseInt(argv[0]);
- int maxA = currentA;
- int currentB = Integer.parseInt(argv[1]);
- int maxB = currentB;
- for(int i = 2; i < argv.length - 1; i += 2) {
- currentA = Integer.parseInt(argv[i]);
- currentB = Integer.parseInt(argv[i + 1]);
- if (currentA > maxA) {
- maxA = currentA;
- }
- if (currentB > maxB) {
- maxB = currentB;
- }
- }
- NDConditionalEstimator newEst = new NDConditionalEstimator(maxB + 1,
- 1);
- for(int i = 0; i < argv.length - 1; i += 2) {
- currentA = Integer.parseInt(argv[i]);
- currentB = Integer.parseInt(argv[i + 1]);
- System.out.println(newEst);
- System.out.println("Prediction for " + currentA + '|' + currentB
- + " = "
- + newEst.getProbability(currentA, currentB));
- newEst.addValue(currentA, currentB, 1);
- }
- } catch (Exception e) {
- System.out.println(e.getMessage());
- }
- }
- }