Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
ZeroR.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 4k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * ZeroR.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.classifiers.rules;
- import weka.classifiers.Classifier;
- import weka.classifiers.DistributionClassifier;
- import weka.classifiers.Evaluation;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- /**
- * Class for building and using a 0-R classifier. Predicts the mean
- * (for a numeric class) or the mode (for a nominal class).
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.7 $
- */
- public class ZeroR extends DistributionClassifier
- implements WeightedInstancesHandler {
- /** The class value 0R predicts. */
- private double m_ClassValue;
- /** The number of instances in each class (null if class numeric). */
- private double [] m_Counts;
- /** The class attribute. */
- private Attribute m_Class;
- /**
- * Generates the classifier.
- *
- * @param instances set of instances serving as training data
- * @exception Exception if the classifier has not been generated successfully
- */
- public void buildClassifier(Instances instances) throws Exception {
- m_Class = instances.classAttribute();
- m_ClassValue = 0;
- switch (instances.classAttribute().type()) {
- case Attribute.NUMERIC:
- m_Counts = null;
- break;
- case Attribute.NOMINAL:
- m_Counts = new double [instances.numClasses()];
- for (int i = 0; i < m_Counts.length; i++) {
- m_Counts[i] = 1;
- }
- break;
- default:
- throw new Exception("ZeroR can only handle nominal and numeric class"
- + " attributes.");
- }
- Enumeration enum = instances.enumerateInstances();
- while (enum.hasMoreElements()) {
- Instance instance = (Instance) enum.nextElement();
- if (!instance.classIsMissing()) {
- if (instances.classAttribute().isNominal()) {
- m_Counts[(int)instance.classValue()] += instance.weight();
- } else {
- m_ClassValue += instance.weight() * instance.classValue();
- }
- }
- }
- if (instances.classAttribute().isNumeric()) {
- if (Utils.gr(instances.sumOfWeights(), 0)) {
- m_ClassValue /= instances.sumOfWeights();
- }
- } else {
- m_ClassValue = Utils.maxIndex(m_Counts);
- Utils.normalize(m_Counts);
- }
- }
- /**
- * Classifies a given instance.
- *
- * @param instance the instance to be classified
- * @return index of the predicted class
- */
- public double classifyInstance(Instance instance) {
- return m_ClassValue;
- }
- /**
- * Calculates the class membership probabilities for the given test instance.
- *
- * @param instance the instance to be classified
- * @return predicted class probability distribution
- * @exception Exception if class is numeric
- */
- public double [] distributionForInstance(Instance instance)
- throws Exception {
- if (m_Counts == null) {
- double[] result = new double[1];
- result[0] = m_ClassValue;
- return result;
- } else {
- return (double []) m_Counts.clone();
- }
- }
- /**
- * Returns a description of the classifier.
- *
- * @return a description of the classifier as a string.
- */
- public String toString() {
- if (m_Class == null) {
- return "ZeroR: No model built yet.";
- }
- if (m_Counts == null) {
- return "ZeroR predicts class value: " + m_ClassValue;
- } else {
- return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue);
- }
- }
- /**
- * Main method for testing this class.
- *
- * @param argv the options
- */
- public static void main(String [] argv) {
- try {
- System.out.println(Evaluation.evaluateModel(new ZeroR(), argv));
- } catch (Exception e) {
- System.err.println(e.getMessage());
- }
- }
- }