Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
HyperPipes.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 8k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * HyperPipes.java
- * Copyright (C) 1999 Intelligenesis Corp.
- *
- */
- package weka.classifiers.misc;
- import weka.classifiers.Evaluation;
- import weka.classifiers.Classifier;
- import weka.classifiers.DistributionClassifier;
- import weka.core.Attribute;
- import weka.core.Instance;
- import weka.core.Instances;
- import weka.core.Utils;
- import weka.core.UnsupportedAttributeTypeException;
- import weka.core.UnsupportedClassTypeException;
- import java.io.*;
- /**
- * Class implementing a HyperPipe classifier. For each category a
- * HyperPipe is constructed that contains all points of that category
- * (essentially records the attribute bounds observed for each category).
- * Test instances are classified according to the category that most
- * contains the instance).
- * Does not handle numeric class, or missing values in test cases. Extremely
- * simple algorithm, but has the advantage of being extremely fast, and
- * works quite well when you have smegloads of attributes.
- *
- * @author Lucio de Souza Coelho (lucio@intelligenesis.net)
- * @author Len Trigg (len@intelligenesis.net)
- * @version $Revision: 1.10 $
- */
- public class HyperPipes extends DistributionClassifier {
- /** The index of the class attribute */
- protected int m_ClassIndex;
- /** The structure of the training data */
- protected Instances m_Instances;
- /** Stores the HyperPipe for each class */
- protected HyperPipe [] m_HyperPipes;
- /**
- * Represents an n-dimensional structure that bounds all instances
- * passed to it (generally all of a given class value).
- */
- class HyperPipe implements Serializable {
- /** Contains the numeric bounds of all instances in the HyperPipe */
- protected double [][] m_NumericBounds;
- /** Contains the nominal bounds of all instances in the HyperPipe */
- protected boolean [][] m_NominalBounds;
- /**
- * Creates the HyperPipe as the n-dimensional parallel-piped
- * with minimum volume containing all the points in
- * pointSet.
- *
- * @param instances all instances belonging to the same class
- * @exception Exception if missing values are found
- */
- public HyperPipe(Instances instances) throws Exception {
- m_NumericBounds = new double [instances.numAttributes()][];
- m_NominalBounds = new boolean [instances.numAttributes()][];
- for (int i = 0; i < instances.numAttributes(); i++) {
- switch (instances.attribute(i).type()) {
- case Attribute.NUMERIC:
- m_NumericBounds[i] = new double [2];
- m_NumericBounds[i][0] = Double.POSITIVE_INFINITY;
- m_NumericBounds[i][1] = Double.NEGATIVE_INFINITY;
- break;
- case Attribute.NOMINAL:
- m_NominalBounds[i] = new boolean [instances.attribute(i).numValues()];
- break;
- default:
- throw new UnsupportedAttributeTypeException("Cannot process string attributes!");
- }
- }
- for (int i = 0; i < instances.numInstances(); i++) {
- addInstance(instances.instance(i));
- }
- }
- /**
- * Updates the bounds arrays with a single instance. Missing values
- * are ignored (i.e. they don't change the bounds for that attribute)
- *
- * @param instance the instance
- * @exception Exception if any missing values are encountered
- */
- public void addInstance(Instance instance) throws Exception {
- for (int j = 0; j < instance.numAttributes(); j++) {
- if ((j != m_ClassIndex) && (!instance.isMissing(j))) {
- double current = instance.value(j);
- if (m_NumericBounds[j] != null) { // i.e. a numeric attribute
- if (current < m_NumericBounds[j][0])
- m_NumericBounds[j][0] = current;
- if (current > m_NumericBounds[j][1])
- m_NumericBounds[j][1] = current;
- } else { // i.e. a nominal attribute
- m_NominalBounds[j][(int) current] = true;
- }
- }
- }
- }
- /**
- * Returns the fraction of the dimensions of a given instance with
- * values lying within the corresponding bounds of the HyperPipe.
- *
- * @param instance the instance
- * @exception Exception if any missing values are encountered
- */
- public double partialContains(Instance instance) throws Exception {
- int count = 0;
- for (int i = 0; i < instance.numAttributes(); i++) {
- if (i == m_ClassIndex) {
- continue;
- }
- if (instance.isMissing(i)) {
- continue;
- }
- double current = instance.value(i);
- if (m_NumericBounds[i] != null) { // i.e. a numeric attribute
- if ((current >= m_NumericBounds[i][0])
- && (current <= m_NumericBounds[i][1])) {
- count++;
- }
- } else { // i.e. a nominal attribute
- if (m_NominalBounds[i][(int) current]) {
- count++;
- }
- }
- }
- return ((double)count) / (instance.numAttributes() - 1);
- }
- }
- /**
- * Generates the classifier.
- *
- * @param instances set of instances serving as training data
- * @exception Exception if the classifier has not been generated successfully
- */
- public void buildClassifier(Instances instances) throws Exception{
- if (instances.classIndex() == -1) {
- throw new Exception("No class attribute assigned");
- }
- if (!instances.classAttribute().isNominal()) {
- throw new UnsupportedClassTypeException("HyperPipes: class attribute needs to be nominal!");
- }
- m_ClassIndex = instances.classIndex();
- m_Instances = new Instances(instances, 0); // Copy the structure for ref
- // Create the HyperPipe for each class
- m_HyperPipes = new HyperPipe [instances.numClasses()];
- for (int i = 0; i < m_HyperPipes.length; i++) {
- m_HyperPipes[i] = new HyperPipe(new Instances(instances, 0));
- }
- // Add the instances
- for (int i = 0; i < instances.numInstances(); i++) {
- updateClassifier(instances.instance(i));
- }
- }
- /**
- * Updates the classifier.
- *
- * @param instance the instance to be put into the classifier
- * @exception Exception if the instance could not be included successfully
- */
- public void updateClassifier(Instance instance) throws Exception {
- if (instance.classIsMissing()) {
- return;
- }
- m_HyperPipes[(int) instance.classValue()].addInstance(instance);
- }
- /**
- * Classifies the given test instance.
- *
- * @param instance the instance to be classified
- * @return the predicted class for the instance
- * @exception Exception if the instance can't be classified
- */
- public double [] distributionForInstance(Instance instance) throws Exception {
- double [] dist = new double[m_HyperPipes.length];
- for (int j = 0; j < m_HyperPipes.length; j++) {
- dist[j] = m_HyperPipes[j].partialContains(instance);
- }
- Utils.normalize(dist);
- return dist;
- }
- /**
- * Returns a description of this classifier.
- *
- * @return a description of this classifier as a string.
- */
- public String toString() {
- if (m_HyperPipes == null) {
- return ("HyperPipes classifier");
- }
- StringBuffer text = new StringBuffer("HyperPipes classifiern");
- /* Perhaps print out the bounds for each HyperPipe.
- for (int i = 0; i < m_HyperPipes.length; i++) {
- text.append("HyperPipe for class: "
- + m_Instances.attribute(m_ClassIndex).value(i) + "n");
- text.append(m_HyperPipes[i] + "nn");
- }
- */
- return text.toString();
- }
- /**
- * Main method for testing this class.
- *
- * @param argv should contain command line arguments for evaluation
- * (see Evaluation).
- */
- public static void main(String [] argv) {
- try {
- System.out.println(Evaluation.evaluateModel(new HyperPipes(), argv));
- } catch (Exception e) {
- System.err.println(e.getMessage());
- }
- }
- }