Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
Resample.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 12k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * Resample.java
- * Copyright (C) 1999 Intelligenesis Corp.
- *
- */
- package weka.filters.supervised.instance;
- import weka.filters.*;
- import weka.core.Instance;
- import weka.core.Instances;
- import weka.core.OptionHandler;
- import weka.core.Option;
- import weka.core.Utils;
- import java.util.Random;
- import java.util.Enumeration;
- import java.util.Vector;
- /**
- * Produces a random subsample of a dataset. The original dataset must
- * fit entirely in memory. The number of instances in the generated
- * dataset may be specified. The dataset must have a nominal class
- * attribute. If not, use the unsupervised version. The filter can be
- * made to maintain the class distribution in the subsample, or to bias
- * the class distribution toward a uniform distribution. When used in batch
- * mode, subsequent batches are <b>not</b> resampled.
- *
- * Valid options are:<p>
- *
- * -S num <br>
- * Specify the random number seed (default 1).<p>
- *
- * -B num <br>
- * Specify a bias towards uniform class distribution. 0 = distribution
- * in input data, 1 = uniform class distribution (default 0). <p>
- *
- * -Z percent <br>
- * Specify the size of the output dataset, as a percentage of the input
- * dataset (default 100). <p>
- *
- * @author Len Trigg (len@intelligenesis.net)
- * @version $Revision: 1.1 $
- **/
- public class Resample extends Filter implements SupervisedFilter,
- OptionHandler {
- /** The subsample size, percent of original set, default 100% */
- private double m_SampleSizePercent = 100;
- /** The random number generator seed */
- private int m_RandomSeed = 1;
- /** The degree of bias towards uniform (nominal) class distribution */
- private double m_BiasToUniformClass = 0;
- /** True if the first batch has been done */
- private boolean m_FirstBatchDone = false;
- /**
- * Returns an enumeration describing the available options.
- *
- * @return an enumeration of all the available options.
- */
- public Enumeration listOptions() {
- Vector newVector = new Vector(1);
- newVector.addElement(new Option(
- "tSpecify the random number seed (default 1)",
- "S", 1, "-S <num>"));
- newVector.addElement(new Option(
- "tThe size of the output dataset, as a percentage ofn"
- +"tthe input dataset (default 100)",
- "Z", 1, "-Z <num>"));
- newVector.addElement(new Option(
- "tBias factor towards uniform class distribution.n"
- +"t0 = distribution in input data -- 1 = uniform distribution.n"
- +"t(default 0)",
- "B", 1, "-B <num>"));
- return newVector.elements();
- }
- /**
- * Parses a list of options for this object. Valid options are:<p>
- *
- * -S num <br>
- * Specify the random number seed (default 1).<p>
- *
- * -B num <br>
- * Specify a bias towards uniform class distribution. 0 = distribution
- * in input data, 1 = uniform class distribution (default 0). <p>
- *
- * -Z percent <br>
- * Specify the size of the output dataset, as a percentage of the input
- * dataset (default 100). <p>
- *
- * @param options the list of options as an array of strings
- * @exception Exception if an option is not supported
- */
- public void setOptions(String[] options) throws Exception {
- String seedString = Utils.getOption('S', options);
- if (seedString.length() != 0) {
- setRandomSeed(Integer.parseInt(seedString));
- } else {
- setRandomSeed(1);
- }
- String biasString = Utils.getOption('B', options);
- if (biasString.length() != 0) {
- setBiasToUniformClass(Double.valueOf(biasString).doubleValue());
- } else {
- setBiasToUniformClass(0);
- }
- String sizeString = Utils.getOption('Z', options);
- if (sizeString.length() != 0) {
- setSampleSizePercent(Double.valueOf(sizeString).doubleValue());
- } else {
- setSampleSizePercent(100);
- }
- if (getInputFormat() != null) {
- setInputFormat(getInputFormat());
- }
- }
- /**
- * Gets the current settings of the filter.
- *
- * @return an array of strings suitable for passing to setOptions
- */
- public String [] getOptions() {
- String [] options = new String [6];
- int current = 0;
- options[current++] = "-B";
- options[current++] = "" + getBiasToUniformClass();
- options[current++] = "-S"; options[current++] = "" + getRandomSeed();
- options[current++] = "-Z"; options[current++] = "" + getSampleSizePercent();
- while (current < options.length) {
- options[current++] = "";
- }
- return options;
- }
- /**
- * Gets the bias towards a uniform class. A value of 0 leaves the class
- * distribution as-is, a value of 1 ensures the class distributions are
- * uniform in the output data.
- *
- * @return the current bias
- */
- public double getBiasToUniformClass() {
- return m_BiasToUniformClass;
- }
- /**
- * Sets the bias towards a uniform class. A value of 0 leaves the class
- * distribution as-is, a value of 1 ensures the class distributions are
- * uniform in the output data.
- *
- * @param newBiasToUniformClass the new bias value, between 0 and 1.
- */
- public void setBiasToUniformClass(double newBiasToUniformClass) {
- m_BiasToUniformClass = newBiasToUniformClass;
- }
- /**
- * Gets the random number seed.
- *
- * @return the random number seed.
- */
- public int getRandomSeed() {
- return m_RandomSeed;
- }
- /**
- * Sets the random number seed.
- *
- * @param newSeed the new random number seed.
- */
- public void setRandomSeed(int newSeed) {
- m_RandomSeed = newSeed;
- }
- /**
- * Gets the subsample size as a percentage of the original set.
- *
- * @return the subsample size
- */
- public double getSampleSizePercent() {
- return m_SampleSizePercent;
- }
- /**
- * Sets the size of the subsample, as a percentage of the original set.
- *
- * @param newSampleSizePercent the subsample set size, between 0 and 100.
- */
- public void setSampleSizePercent(double newSampleSizePercent) {
- m_SampleSizePercent = newSampleSizePercent;
- }
- /**
- * Sets the format of the input instances.
- *
- * @param instanceInfo an Instances object containing the input
- * instance structure (any instances contained in the object are
- * ignored - only the structure is required).
- * @return true if the outputFormat may be collected immediately
- * @exception Exception if the input format can't be set
- * successfully
- */
- public boolean setInputFormat(Instances instanceInfo)
- throws Exception {
- if (instanceInfo.classIndex() < 0 || !instanceInfo.classAttribute().isNominal()) {
- throw new IllegalArgumentException("Supervised resample requires nominal class");
- }
- super.setInputFormat(instanceInfo);
- setOutputFormat(instanceInfo);
- m_FirstBatchDone = false;
- return true;
- }
- /**
- * Input an instance for filtering. Filter requires all
- * training instances be read before producing output.
- *
- * @param instance the input instance
- * @return true if the filtered instance may now be
- * collected with output().
- * @exception IllegalStateException if no input structure has been defined
- */
- public boolean input(Instance instance) {
- if (getInputFormat() == null) {
- throw new IllegalStateException("No input instance format defined");
- }
- if (m_NewBatch) {
- resetQueue();
- m_NewBatch = false;
- }
- if (m_FirstBatchDone) {
- push(instance);
- return true;
- } else {
- bufferInput(instance);
- return false;
- }
- }
- /**
- * Signify that this batch of input to the filter is finished.
- * If the filter requires all instances prior to filtering,
- * output() may now be called to retrieve the filtered instances.
- *
- * @return true if there are instances pending output
- * @exception IllegalStateException if no input structure has been defined
- */
- public boolean batchFinished() {
- if (getInputFormat() == null) {
- throw new IllegalStateException("No input instance format defined");
- }
- if (!m_FirstBatchDone) {
- // Do the subsample, and clear the input instances.
- createSubsample();
- }
- flushInput();
- m_NewBatch = true;
- m_FirstBatchDone = true;
- return (numPendingOutput() != 0);
- }
- /**
- * Creates a subsample of the current set of input instances. The output
- * instances are pushed onto the output queue for collection.
- */
- private void createSubsample() {
- int origSize = getInputFormat().numInstances();
- int sampleSize = (int) (origSize * m_SampleSizePercent / 100);
- // Subsample that takes class distribution into consideration
- // Sort according to class attribute.
- getInputFormat().sort(getInputFormat().classIndex());
- // Create an index of where each class value starts
- int [] classIndices = new int [getInputFormat().numClasses() + 1];
- int currentClass = 0;
- classIndices[currentClass] = 0;
- for (int i = 0; i < getInputFormat().numInstances(); i++) {
- Instance current = getInputFormat().instance(i);
- if (current.classIsMissing()) {
- for (int j = currentClass + 1; j < classIndices.length; j++) {
- classIndices[j] = i;
- }
- break;
- } else if (current.classValue() != currentClass) {
- for (int j = currentClass + 1; j <= current.classValue(); j++) {
- classIndices[j] = i;
- }
- currentClass = (int) current.classValue();
- }
- }
- if (currentClass <= getInputFormat().numClasses()) {
- for (int j = currentClass + 1; j < classIndices.length; j++) {
- classIndices[j] = getInputFormat().numInstances();
- }
- }
- int actualClasses = 0;
- for (int i = 0; i < classIndices.length - 1; i++) {
- if (classIndices[i] != classIndices[i + 1]) {
- actualClasses++;
- }
- }
- // Create the new sample
- Random random = new Random(m_RandomSeed);
- // Convert pending input instances
- for(int i = 0; i < sampleSize; i++) {
- int index = 0;
- if (random.nextDouble() < m_BiasToUniformClass) {
- // Pick a random class (of those classes that actually appear)
- int cIndex = Math.abs(random.nextInt()) % actualClasses;
- for (int j = 0, k = 0; j < classIndices.length - 1; j++) {
- if ((classIndices[j] != classIndices[j + 1])
- && (k++ >= cIndex)) {
- // Pick a random instance of the designated class
- index = classIndices[j]
- + (Math.abs(random.nextInt()) % (classIndices[j + 1]
- - classIndices[j]));
- break;
- }
- }
- } else {
- index = (int) (random.nextDouble() * origSize);
- }
- push((Instance)getInputFormat().instance(index).copy());
- }
- }
- /**
- * Main method for testing this class.
- *
- * @param argv should contain arguments to the filter:
- * use -h for help
- */
- public static void main(String [] argv) {
- try {
- if (Utils.getFlag('b', argv)) {
- Filter.batchFilterFile(new Resample(), argv);
- } else {
- Filter.filterFile(new Resample(), argv);
- }
- } catch (Exception ex) {
- System.out.println(ex.getMessage());
- }
- }
- }