Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
RankSearch.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 11k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * RankSearch.java
- * Copyright (C) 1999 Mark Hall
- *
- */
- package weka.attributeSelection;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- /**
- * Class for evaluating a attribute ranking (given by a specified
- * evaluator) using a specified subset evaluator. <p>
- *
- * Valid options are: <p>
- *
- * -A <attribute/subset evaluator> <br>
- * Specify the attribute/subset evaluator to be used for generating the
- * ranking. If a subset evaluator is specified then a forward selection
- * search is used to produce a ranked list of attributes.<p>
- *
- * @author Mark Hall (mhall@cs.waikato.ac.nz)
- * @version $Revision: 1.7 $
- */
- public class RankSearch extends ASSearch implements OptionHandler {
- /** does the data have a class */
- private boolean m_hasClass;
- /** holds the class index */
- private int m_classIndex;
- /** number of attributes in the data */
- private int m_numAttribs;
- /** the best subset found */
- private BitSet m_best_group;
- /** the attribute evaluator to use for generating the ranking */
- private ASEvaluation m_ASEval;
- /** the subset evaluator with which to evaluate the ranking */
- private ASEvaluation m_SubsetEval;
- /** the training instances */
- private Instances m_Instances;
- /** the merit of the best subset found */
- private double m_bestMerit;
- /** will hold the attribute ranking */
- private int [] m_Ranking;
- /**
- * Returns a string describing this search method
- * @return a description of the search method suitable for
- * displaying in the explorer/experimenter gui
- */
- public String globalInfo() {
- return "RankSearch : nn"
- +"Uses an attribute/subset evaluator to rank all attributes. "
- +"If a subset evaluator is specified, then a forward selection "
- +"search is used to generate a ranked list. From the ranked "
- +"list of attributes, subsets of increasing size are evaluated, ie. "
- +"The best attribute, the best attribute plus the next best attribute, "
- +"etc.... The best attribute set is reported. RankSearch is linear in "
- +"the number of attributes if a simple attribute evaluator is used "
- +"such as GainRatioAttributeEval.n";
- }
- public RankSearch () {
- resetOptions();
- }
- /**
- * Returns the tip text for this property
- * @return tip text for this property suitable for
- * displaying in the explorer/experimenter gui
- */
- public String attributeEvaluatorTipText() {
- return "Attribute evaluator to use for generating a ranking.";
- }
- /**
- * Set the attribute evaluator to use for generating the ranking.
- * @param newEvaluator the attribute evaluator to use.
- */
- public void setAttributeEvaluator(ASEvaluation newEvaluator) {
- m_ASEval = newEvaluator;
- }
- /**
- * Get the attribute evaluator used to generate the ranking.
- * @return the evaluator used to generate the ranking.
- */
- public ASEvaluation getAttributeEvaluator() {
- return m_ASEval;
- }
- /**
- * Returns an enumeration describing the available options.
- * @return an enumeration of all the available options.
- **/
- public Enumeration listOptions () {
- Vector newVector = new Vector(4);
- newVector.addElement(new Option("tclass name of attribute evaluator to"
- + "ntuse for ranking. Place any"
- + "ntevaluator options LAST on the"
- + "ntcommand line following a "--"."
- + "nteg. -A weka.attributeSelection."
- +"GainRatioAttributeEval ... "
- + "-- -M", "A", 1, "-A <attribute evaluator>"));
- if ((m_ASEval != null) &&
- (m_ASEval instanceof OptionHandler)) {
- newVector.addElement(new Option("", "", 0, "nOptions specific to"
- + "evaluator "
- + m_ASEval.getClass().getName()
- + ":"));
- Enumeration enum = ((OptionHandler)m_ASEval).listOptions();
- while (enum.hasMoreElements()) {
- newVector.addElement(enum.nextElement());
- }
- }
- return newVector.elements();
- }
- /**
- * Parses a given list of options.
- *
- * Valid options are:<p>
- *
- * -A <attribute evaluator> <br>
- *
- * @param options the list of options as an array of strings
- * @exception Exception if an option is not supported
- *
- **/
- public void setOptions (String[] options)
- throws Exception
- {
- String optionString;
- resetOptions();
- optionString = Utils.getOption('A', options);
- if (optionString.length() == 0) {
- throw new Exception("An attribute evaluator must be specified with"
- + "-A option");
- }
- setAttributeEvaluator(ASEvaluation.forName(optionString,
- Utils.partitionOptions(options)));
- }
- /**
- * Gets the current settings of WrapperSubsetEval.
- *
- * @return an array of strings suitable for passing to setOptions()
- */
- public String[] getOptions () {
- String[] evaluatorOptions = new String[0];
- if ((m_ASEval != null) &&
- (m_ASEval instanceof OptionHandler)) {
- evaluatorOptions = ((OptionHandler)m_ASEval).getOptions();
- }
- String[] options = new String[4 + evaluatorOptions.length];
- int current = 0;
- if (getAttributeEvaluator() != null) {
- options[current++] = "-A";
- options[current++] = getAttributeEvaluator().getClass().getName();
- }
- options[current++] = "--";
- System.arraycopy(evaluatorOptions, 0, options, current,
- evaluatorOptions.length);
- current += evaluatorOptions.length;
- while (current < options.length) {
- options[current++] = "";
- }
- return options;
- }
- /**
- * Reset the search method.
- */
- protected void resetOptions () {
- m_ASEval = new GainRatioAttributeEval();
- m_Ranking = null;
- }
- /**
- * Ranks attributes using the specified attribute evaluator and then
- * searches the ranking using the supplied subset evaluator.
- *
- * @param ASEvaluator the subset evaluator to guide the search
- * @param data the training instances.
- * @return an array (not necessarily ordered) of selected attribute indexes
- * @exception Exception if the search can't be completed
- */
- public int[] search (ASEvaluation ASEval, Instances data)
- throws Exception {
- double best_merit = -Double.MAX_VALUE;
- double temp_merit;
- BitSet temp_group, best_group=null;
- if (!(ASEval instanceof SubsetEvaluator)) {
- throw new Exception(ASEval.getClass().getName()
- + " is not a "
- + "Subset evaluator!");
- }
- m_SubsetEval = ASEval;
- m_Instances = data;
- m_numAttribs = m_Instances.numAttributes();
- /* if (m_ASEval instanceof AttributeTransformer) {
- throw new Exception("Can't use an attribute transformer "
- +"with RankSearch");
- } */
- if (m_ASEval instanceof UnsupervisedAttributeEvaluator ||
- m_ASEval instanceof UnsupervisedSubsetEvaluator) {
- m_hasClass = false;
- if (!(m_SubsetEval instanceof UnsupervisedSubsetEvaluator)) {
- throw new Exception("Must use an unsupervised subset evaluator.");
- }
- }
- else {
- m_hasClass = true;
- m_classIndex = m_Instances.classIndex();
- }
- if (m_ASEval instanceof AttributeEvaluator) {
- // generate the attribute ranking first
- Ranker ranker = new Ranker();
- ((AttributeEvaluator)m_ASEval).buildEvaluator(m_Instances);
- if (m_ASEval instanceof AttributeTransformer) {
- // get the transformed data a rebuild the subset evaluator
- m_Instances = ((AttributeTransformer)m_ASEval).
- transformedData();
- ((SubsetEvaluator)m_SubsetEval).buildEvaluator(m_Instances);
- }
- m_Ranking = ranker.search((AttributeEvaluator)m_ASEval, m_Instances);
- } else {
- ForwardSelection fs = new ForwardSelection();
- double [][]rankres;
- fs.setGenerateRanking(true);
- ((SubsetEvaluator)m_ASEval).buildEvaluator(m_Instances);
- fs.search(m_ASEval, m_Instances);
- rankres = fs.rankedAttributes();
- m_Ranking = new int[rankres.length];
- for (int i=0;i<rankres.length;i++) {
- m_Ranking[i] = (int)rankres[i][0];
- }
- }
- // now evaluate the attribute ranking
- for (int i=0;i<m_Ranking.length;i++) {
- temp_group = new BitSet(m_numAttribs);
- for (int j=0;j<=i;j++) {
- temp_group.set(m_Ranking[j]);
- }
- temp_merit = ((SubsetEvaluator)m_SubsetEval).evaluateSubset(temp_group);
- if (temp_merit > best_merit) {
- best_merit = temp_merit;;
- best_group = temp_group;
- }
- }
- m_bestMerit = best_merit;
- return attributeList(best_group);
- }
- /**
- * converts a BitSet into a list of attribute indexes
- * @param group the BitSet to convert
- * @return an array of attribute indexes
- **/
- private int[] attributeList (BitSet group) {
- int count = 0;
- // count how many were selected
- for (int i = 0; i < m_numAttribs; i++) {
- if (group.get(i)) {
- count++;
- }
- }
- int[] list = new int[count];
- count = 0;
- for (int i = 0; i < m_numAttribs; i++) {
- if (group.get(i)) {
- list[count++] = i;
- }
- }
- return list;
- }
- /**
- * returns a description of the search as a String
- * @return a description of the search
- */
- public String toString () {
- StringBuffer text = new StringBuffer();
- text.append("tRankSearch :n");
- text.append("tAttribute evaluator : "
- + getAttributeEvaluator().getClass().getName() +" ");
- if (m_ASEval instanceof OptionHandler) {
- String[] evaluatorOptions = new String[0];
- evaluatorOptions = ((OptionHandler)m_ASEval).getOptions();
- for (int i=0;i<evaluatorOptions.length;i++) {
- text.append(evaluatorOptions[i]+' ');
- }
- }
- text.append("n");
- text.append("tAttribute ranking : n");
- int rlength = (int)(Math.log(m_Ranking.length) / Math.log(10) + 1);
- for (int i=0;i<m_Ranking.length;i++) {
- text.append("t "+Utils.doubleToString((double)(m_Ranking[i]+1),
- rlength,0)
- +" "+m_Instances.attribute(m_Ranking[i]).name()+'n');
- }
- text.append("tMerit of best subset found : ");
- int fieldwidth = 3;
- double precision = (m_bestMerit - (int)m_bestMerit);
- if (Math.abs(m_bestMerit) > 0) {
- fieldwidth = (int)Math.abs((Math.log(Math.abs(m_bestMerit)) / Math.log(10)))+2;
- }
- if (Math.abs(precision) > 0) {
- precision = Math.abs((Math.log(Math.abs(precision)) / Math.log(10)))+3;
- } else {
- precision = 2;
- }
- text.append(Utils.doubleToString(Math.abs(m_bestMerit),
- fieldwidth+(int)precision,
- (int)precision)+"n");
- return text.toString();
- }
- }