Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
SymmetricalUncertAttributeEval.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 10k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * SymmetricalUncertAttributeEval.java
- * Copyright (C) 1999 Mark Hall
- *
- */
- package weka.attributeSelection;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- import weka.filters.supervised.attribute.Discretize;
- import weka.filters.Filter;
- /**
- * Class for Evaluating attributes individually by measuring symmetrical
- * uncertainty with respect to the class.
- *
- * Valid options are:<p>
- *
- * -M <br>
- * Treat missing values as a seperate value. <br>
- *
- * @author Mark Hall (mhall@cs.waikato.ac.nz)
- * @version $Revision: 1.14 $
- */
- public class SymmetricalUncertAttributeEval
- extends AttributeEvaluator
- implements OptionHandler
- {
- /** The training instances */
- private Instances m_trainInstances;
- /** The class index */
- private int m_classIndex;
- /** The number of attributes */
- private int m_numAttribs;
- /** The number of instances */
- private int m_numInstances;
- /** The number of classes */
- private int m_numClasses;
- /** Treat missing values as a seperate value */
- private boolean m_missing_merge;
- /**
- * Returns a string describing this attribute evaluator
- * @return a description of the evaluator suitable for
- * displaying in the explorer/experimenter gui
- */
- public String globalInfo() {
- return "GainRatioAttributeEval :nnEvaluates the worth of an attribute "
- +"by measuring the symmetrical uncertainty with respect to the class. "
- +"nn SymmU(Class, Attribute) = 2 * (H(Class) - H(Class | Attribute)) "
- +"/ H(Class) + H(Attribute).n";
- }
- /**
- * Constructor
- */
- public SymmetricalUncertAttributeEval () {
- resetOptions();
- }
- /**
- * Returns an enumeration describing the available options.
- * @return an enumeration of all the available options.
- **/
- public Enumeration listOptions () {
- Vector newVector = new Vector(1);
- newVector.addElement(new Option("ttreat missing values as a seperate "
- + "value.", "M", 0, "-M"));
- return newVector.elements();
- }
- /**
- * Parses a given list of options.
- *
- * -M <br>
- * Treat missing values as a seperate value. <p>
- *
- * @param options the list of options as an array of strings
- * @exception Exception if an option is not supported
- **/
- public void setOptions (String[] options)
- throws Exception
- {
- resetOptions();
- setMissingMerge(!(Utils.getFlag('M', options)));
- }
- /**
- * Returns the tip text for this property
- * @return tip text for this property suitable for
- * displaying in the explorer/experimenter gui
- */
- public String missingMergeTipText() {
- return "Distribute counts for missing values. Counts are distributed "
- +"across other values in proportion to their frequency. Otherwise, "
- +"missing is treated as a separate value.";
- }
- /**
- * distribute the counts for missing values across observed values
- *
- * @param b true=distribute missing values.
- */
- public void setMissingMerge (boolean b) {
- m_missing_merge = b;
- }
- /**
- * get whether missing values are being distributed or not
- *
- * @return true if missing values are being distributed.
- */
- public boolean getMissingMerge () {
- return m_missing_merge;
- }
- /**
- * Gets the current settings of WrapperSubsetEval.
- * @return an array of strings suitable for passing to setOptions()
- */
- public String[] getOptions () {
- String[] options = new String[1];
- int current = 0;
- if (!getMissingMerge()) {
- options[current++] = "-M";
- }
- while (current < options.length) {
- options[current++] = "";
- }
- return options;
- }
- /**
- * Initializes a symmetrical uncertainty attribute evaluator.
- * Discretizes all attributes that are numeric.
- *
- * @param data set of instances serving as training data
- * @exception Exception if the evaluator has not been
- * generated successfully
- */
- public void buildEvaluator (Instances data)
- throws Exception
- {
- if (data.checkForStringAttributes()) {
- throw new UnsupportedAttributeTypeException("Can't handle string attributes!");
- }
- m_trainInstances = data;
- m_classIndex = m_trainInstances.classIndex();
- m_numAttribs = m_trainInstances.numAttributes();
- m_numInstances = m_trainInstances.numInstances();
- if (m_trainInstances.attribute(m_classIndex).isNumeric()) {
- throw new Exception("Class must be nominal!");
- }
- Discretize disTransform = new Discretize();
- disTransform.setUseBetterEncoding(true);
- disTransform.setInputFormat(m_trainInstances);
- m_trainInstances = Filter.useFilter(m_trainInstances, disTransform);
- m_numClasses = m_trainInstances.attribute(m_classIndex).numValues();
- }
- /**
- * set options to default values
- */
- protected void resetOptions () {
- m_trainInstances = null;
- m_missing_merge = true;
- }
- /**
- * evaluates an individual attribute by measuring the symmetrical
- * uncertainty between it and the class.
- *
- * @param attribute the index of the attribute to be evaluated
- * @exception Exception if the attribute could not be evaluated
- */
- public double evaluateAttribute (int attribute)
- throws Exception
- {
- int i, j, ii, jj;
- int nnj, nni, ni, nj;
- double sum = 0.0;
- ni = m_trainInstances.attribute(attribute).numValues() + 1;
- nj = m_numClasses + 1;
- double[] sumi, sumj;
- Instance inst;
- double temp = 0.0;
- sumi = new double[ni];
- sumj = new double[nj];
- double[][] counts = new double[ni][nj];
- sumi = new double[ni];
- sumj = new double[nj];
- for (i = 0; i < ni; i++) {
- sumi[i] = 0.0;
- for (j = 0; j < nj; j++) {
- sumj[j] = 0.0;
- counts[i][j] = 0.0;
- }
- }
- // Fill the contingency table
- for (i = 0; i < m_numInstances; i++) {
- inst = m_trainInstances.instance(i);
- if (inst.isMissing(attribute)) {
- ii = ni - 1;
- }
- else {
- ii = (int)inst.value(attribute);
- }
- if (inst.isMissing(m_classIndex)) {
- jj = nj - 1;
- }
- else {
- jj = (int)inst.value(m_classIndex);
- }
- counts[ii][jj]++;
- }
- // get the row totals
- for (i = 0; i < ni; i++) {
- sumi[i] = 0.0;
- for (j = 0; j < nj; j++) {
- sumi[i] += counts[i][j];
- sum += counts[i][j];
- }
- }
- // get the column totals
- for (j = 0; j < nj; j++) {
- sumj[j] = 0.0;
- for (i = 0; i < ni; i++) {
- sumj[j] += counts[i][j];
- }
- }
- // distribute missing counts
- if (m_missing_merge &&
- (sumi[ni-1] < m_numInstances) &&
- (sumj[nj-1] < m_numInstances)) {
- double[] i_copy = new double[sumi.length];
- double[] j_copy = new double[sumj.length];
- double[][] counts_copy = new double[sumi.length][sumj.length];
- for (i = 0; i < ni; i++) {
- System.arraycopy(counts[i], 0, counts_copy[i], 0, sumj.length);
- }
- System.arraycopy(sumi, 0, i_copy, 0, sumi.length);
- System.arraycopy(sumj, 0, j_copy, 0, sumj.length);
- double total_missing = (sumi[ni - 1] + sumj[nj - 1]
- - counts[ni - 1][nj - 1]);
- // do the missing i's
- if (sumi[ni - 1] > 0.0) {
- for (j = 0; j < nj - 1; j++) {
- if (counts[ni - 1][j] > 0.0) {
- for (i = 0; i < ni - 1; i++) {
- temp = ((i_copy[i]/(sum - i_copy[ni - 1])) *
- counts[ni - 1][j]);
- counts[i][j] += temp;
- sumi[i] += temp;
- }
- counts[ni - 1][j] = 0.0;
- }
- }
- }
- sumi[ni - 1] = 0.0;
- // do the missing j's
- if (sumj[nj - 1] > 0.0) {
- for (i = 0; i < ni - 1; i++) {
- if (counts[i][nj - 1] > 0.0) {
- for (j = 0; j < nj - 1; j++) {
- temp = ((j_copy[j]/(sum - j_copy[nj - 1]))*counts[i][nj - 1]);
- counts[i][j] += temp;
- sumj[j] += temp;
- }
- counts[i][nj - 1] = 0.0;
- }
- }
- }
- sumj[nj - 1] = 0.0;
- // do the both missing
- if (counts[ni - 1][nj - 1] > 0.0 && total_missing != sum) {
- for (i = 0; i < ni - 1; i++) {
- for (j = 0; j < nj - 1; j++) {
- temp = (counts_copy[i][j]/(sum - total_missing)) *
- counts_copy[ni - 1][nj - 1];
- counts[i][j] += temp;
- sumi[i] += temp;
- sumj[j] += temp;
- }
- }
- counts[ni - 1][nj - 1] = 0.0;
- }
- }
- return ContingencyTables.symmetricalUncertainty(counts);
- }
- /**
- * Return a description of the evaluator
- * @return description as a string
- */
- public String toString () {
- StringBuffer text = new StringBuffer();
- if (m_trainInstances == null) {
- text.append("tSymmetrical Uncertainty evaluator has not been built");
- }
- else {
- text.append("tSymmetrical Uncertainty Ranking Filter");
- if (!m_missing_merge) {
- text.append("ntMissing values treated as seperate");
- }
- }
- text.append("n");
- return text.toString();
- }
- // ============
- // Test method.
- // ============
- /**
- * Main method for testing this class.
- *
- * @param argv should contain the following arguments:
- * -t training file
- */
- public static void main (String[] argv) {
- try {
- System.out.println(AttributeSelection.
- SelectAttributes(new SymmetricalUncertAttributeEval()
- , argv));
- }
- catch (Exception e) {
- e.printStackTrace();
- System.out.println(e.getMessage());
- }
- }
- }