Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
ClassifierSplitEvaluator.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 23k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * ClassifierSplitEvaluator.java
- * Copyright (C) 1999 Len Trigg
- *
- */
- package weka.experiment;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- import weka.classifiers.*;
- import weka.classifiers.rules.ZeroR;
- /**
- * A SplitEvaluator that produces results for a classification scheme
- * on a nominal class attribute.
- *
- * -W classname <br>
- * Specify the full class name of the classifier to evaluate. <p>
- *
- * -C class index <br>
- * The index of the class for which IR statistics are to
- * be output. (default 1) <p>
- *
- * @author Len Trigg (trigg@cs.waikato.ac.nz)
- * @version $Revision: 1.17 $
- */
- public class ClassifierSplitEvaluator implements SplitEvaluator,
- OptionHandler, AdditionalMeasureProducer {
- /** The classifier used for evaluation */
- protected Classifier m_Classifier = new ZeroR();
- /** The names of any additional measures to look for in SplitEvaluators */
- protected String [] m_AdditionalMeasures = null;
- /** Array of booleans corresponding to the measures in m_AdditionalMeasures
- indicating which of the AdditionalMeasures the current classifier
- can produce */
- protected boolean [] m_doesProduce = null;
- /** The number of additional measures that need to be filled in
- after taking into account column constraints imposed by the final
- destination for results */
- protected int m_numberAdditionalMeasures = 0;
- /** Holds the statistics for the most recent application of the classifier */
- protected String m_result = null;
- /** The classifier options (if any) */
- protected String m_ClassifierOptions = "";
- /** The classifier version */
- protected String m_ClassifierVersion = "";
- /** The length of a key */
- private static final int KEY_SIZE = 3;
- /** The length of a result */
- private static final int RESULT_SIZE = 24;
- /** The number of IR statistics */
- private static final int NUM_IR_STATISTICS = 11;
- /** Class index for information retrieval statistics (default 0) */
- private int m_IRclass = 0;
- /**
- * No args constructor.
- */
- public ClassifierSplitEvaluator() {
- updateOptions();
- }
- /**
- * Returns a string describing this split evaluator
- * @return a description of the split evaluator suitable for
- * displaying in the explorer/experimenter gui
- */
- public String globalInfo() {
- return " A SplitEvaluator that produces results for a classification "
- +"scheme on a nominal class attribute.";
- }
- /**
- * Returns an enumeration describing the available options..
- *
- * @return an enumeration of all the available options.
- */
- public Enumeration listOptions() {
- Vector newVector = new Vector(2);
- newVector.addElement(new Option(
- "tThe full class name of the classifier.n"
- +"teg: weka.classifiers.bayes.NaiveBayes",
- "W", 1,
- "-W <class name>"));
- newVector.addElement(new Option(
- "tThe index of the class for which IR statisticsn" +
- "tare to be output. (default 1)",
- "C", 1,
- "-C <index>"));
- if ((m_Classifier != null) &&
- (m_Classifier instanceof OptionHandler)) {
- newVector.addElement(new Option(
- "",
- "", 0, "nOptions specific to classifier "
- + m_Classifier.getClass().getName() + ":"));
- Enumeration enum = ((OptionHandler)m_Classifier).listOptions();
- while (enum.hasMoreElements()) {
- newVector.addElement(enum.nextElement());
- }
- }
- return newVector.elements();
- }
- /**
- * Parses a given list of options. Valid options are:<p>
- *
- * -W classname <br>
- * Specify the full class name of the classifier to evaluate. <p>
- *
- * -C class index <br>
- * The index of the class for which IR statistics are to
- * be output. (default 1) <p>
- *
- * All option after -- will be passed to the classifier.
- *
- * @param options the list of options as an array of strings
- * @exception Exception if an option is not supported
- */
- public void setOptions(String[] options) throws Exception {
- String cName = Utils.getOption('W', options);
- if (cName.length() == 0) {
- throw new Exception("A classifier must be specified with"
- + " the -W option.");
- }
- // Do it first without options, so if an exception is thrown during
- // the option setting, listOptions will contain options for the actual
- // Classifier.
- setClassifier(Classifier.forName(cName, null));
- if (getClassifier() instanceof OptionHandler) {
- ((OptionHandler) getClassifier())
- .setOptions(Utils.partitionOptions(options));
- updateOptions();
- }
- String indexName = Utils.getOption('C', options);
- if (indexName.length() != 0) {
- m_IRclass = (new Integer(indexName)).intValue() - 1;
- } else {
- m_IRclass = 0;
- }
- }
- /**
- * Gets the current settings of the Classifier.
- *
- * @return an array of strings suitable for passing to setOptions
- */
- public String [] getOptions() {
- String [] classifierOptions = new String [0];
- if ((m_Classifier != null) &&
- (m_Classifier instanceof OptionHandler)) {
- classifierOptions = ((OptionHandler)m_Classifier).getOptions();
- }
- String [] options = new String [classifierOptions.length + 5];
- int current = 0;
- if (getClassifier() != null) {
- options[current++] = "-W";
- options[current++] = getClassifier().getClass().getName();
- }
- options[current++] = "-C";
- options[current++] = "" + (m_IRclass + 1);
- options[current++] = "--";
- System.arraycopy(classifierOptions, 0, options, current,
- classifierOptions.length);
- current += classifierOptions.length;
- while (current < options.length) {
- options[current++] = "";
- }
- return options;
- }
- /**
- * Set a list of method names for additional measures to look for
- * in Classifiers. This could contain many measures (of which only a
- * subset may be produceable by the current Classifier) if an experiment
- * is the type that iterates over a set of properties.
- * @param additionalMeasures a list of method names
- */
- public void setAdditionalMeasures(String [] additionalMeasures) {
- System.err.println("ClassifierSplitEvaluator: setting additional measures");
- m_AdditionalMeasures = additionalMeasures;
- // determine which (if any) of the additional measures this classifier
- // can produce
- if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) {
- m_doesProduce = new boolean [m_AdditionalMeasures.length];
- if (m_Classifier instanceof AdditionalMeasureProducer) {
- Enumeration en = ((AdditionalMeasureProducer)m_Classifier).
- enumerateMeasures();
- while (en.hasMoreElements()) {
- String mname = (String)en.nextElement();
- for (int j=0;j<m_AdditionalMeasures.length;j++) {
- if (mname.compareTo(m_AdditionalMeasures[j]) == 0) {
- m_doesProduce[j] = true;
- }
- }
- }
- }
- } else {
- m_doesProduce = null;
- }
- }
- /**
- * Returns an enumeration of any additional measure names that might be
- * in the classifier
- * @return an enumeration of the measure names
- */
- public Enumeration enumerateMeasures() {
- Vector newVector = new Vector();
- if (m_Classifier instanceof AdditionalMeasureProducer) {
- Enumeration en = ((AdditionalMeasureProducer)m_Classifier).
- enumerateMeasures();
- while (en.hasMoreElements()) {
- String mname = (String)en.nextElement();
- newVector.addElement(mname);
- }
- }
- return newVector.elements();
- }
- /**
- * Returns the value of the named measure
- * @param measureName the name of the measure to query for its value
- * @return the value of the named measure
- * @exception IllegalArgumentException if the named measure is not supported
- */
- public double getMeasure(String additionalMeasureName) {
- if (m_Classifier instanceof AdditionalMeasureProducer) {
- return ((AdditionalMeasureProducer)m_Classifier).
- getMeasure(additionalMeasureName);
- } else {
- throw new IllegalArgumentException("ClassifierSplitEvaluator: "
- +"Can't return value for : "+additionalMeasureName
- +". "+m_Classifier.getClass().getName()+" "
- +"is not an AdditionalMeasureProducer");
- }
- }
- /**
- * Gets the data types of each of the key columns produced for a single run.
- * The number of key fields must be constant
- * for a given SplitEvaluator.
- *
- * @return an array containing objects of the type of each key column. The
- * objects should be Strings, or Doubles.
- */
- public Object [] getKeyTypes() {
- Object [] keyTypes = new Object[KEY_SIZE];
- keyTypes[0] = "";
- keyTypes[1] = "";
- keyTypes[2] = "";
- return keyTypes;
- }
- /**
- * Gets the names of each of the key columns produced for a single run.
- * The number of key fields must be constant
- * for a given SplitEvaluator.
- *
- * @return an array containing the name of each key column
- */
- public String [] getKeyNames() {
- String [] keyNames = new String[KEY_SIZE];
- keyNames[0] = "Scheme";
- keyNames[1] = "Scheme_options";
- keyNames[2] = "Scheme_version_ID";
- return keyNames;
- }
- /**
- * Gets the key describing the current SplitEvaluator. For example
- * This may contain the name of the classifier used for classifier
- * predictive evaluation. The number of key fields must be constant
- * for a given SplitEvaluator.
- *
- * @return an array of objects containing the key.
- */
- public Object [] getKey(){
- Object [] key = new Object[KEY_SIZE];
- key[0] = m_Classifier.getClass().getName();
- key[1] = m_ClassifierOptions;
- key[2] = m_ClassifierVersion;
- return key;
- }
- /**
- * Gets the data types of each of the result columns produced for a
- * single run. The number of result fields must be constant
- * for a given SplitEvaluator.
- *
- * @return an array containing objects of the type of each result column.
- * The objects should be Strings, or Doubles.
- */
- public Object [] getResultTypes() {
- int addm = (m_AdditionalMeasures != null)
- ? m_AdditionalMeasures.length
- : 0;
- int overall_length = RESULT_SIZE+addm;
- overall_length += NUM_IR_STATISTICS;
- Object [] resultTypes = new Object[overall_length];
- Double doub = new Double(0);
- int current = 0;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- // IR stats
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- // Timing stats
- resultTypes[current++] = doub;
- resultTypes[current++] = doub;
- resultTypes[current++] = "";
- // add any additional measures
- for (int i=0;i<addm;i++) {
- resultTypes[current++] = doub;
- }
- if (current != overall_length) {
- throw new Error("ResultTypes didn't fit RESULT_SIZE");
- }
- return resultTypes;
- }
- /**
- * Gets the names of each of the result columns produced for a single run.
- * The number of result fields must be constant
- * for a given SplitEvaluator.
- *
- * @return an array containing the name of each result column
- */
- public String [] getResultNames() {
- int addm = (m_AdditionalMeasures != null)
- ? m_AdditionalMeasures.length
- : 0;
- int overall_length = RESULT_SIZE+addm;
- overall_length += NUM_IR_STATISTICS;
- String [] resultNames = new String[overall_length];
- int current = 0;
- resultNames[current++] = "Number_of_instances";
- // Basic performance stats - right vs wrong
- resultNames[current++] = "Number_correct";
- resultNames[current++] = "Number_incorrect";
- resultNames[current++] = "Number_unclassified";
- resultNames[current++] = "Percent_correct";
- resultNames[current++] = "Percent_incorrect";
- resultNames[current++] = "Percent_unclassified";
- resultNames[current++] = "Kappa_statistic";
- // Sensitive stats - certainty of predictions
- resultNames[current++] = "Mean_absolute_error";
- resultNames[current++] = "Root_mean_squared_error";
- resultNames[current++] = "Relative_absolute_error";
- resultNames[current++] = "Root_relative_squared_error";
- // SF stats
- resultNames[current++] = "SF_prior_entropy";
- resultNames[current++] = "SF_scheme_entropy";
- resultNames[current++] = "SF_entropy_gain";
- resultNames[current++] = "SF_mean_prior_entropy";
- resultNames[current++] = "SF_mean_scheme_entropy";
- resultNames[current++] = "SF_mean_entropy_gain";
- // K&B stats
- resultNames[current++] = "KB_information";
- resultNames[current++] = "KB_mean_information";
- resultNames[current++] = "KB_relative_information";
- // IR stats
- resultNames[current++] = "True_positive_rate";
- resultNames[current++] = "Num_true_positives";
- resultNames[current++] = "False_positive_rate";
- resultNames[current++] = "Num_false_positives";
- resultNames[current++] = "True_negative_rate";
- resultNames[current++] = "Num_true_negatives";
- resultNames[current++] = "False_negative_rate";
- resultNames[current++] = "Num_false_negatives";
- resultNames[current++] = "IR_precision";
- resultNames[current++] = "IR_recall";
- resultNames[current++] = "F_measure";
- // Timing stats
- resultNames[current++] = "Time_training";
- resultNames[current++] = "Time_testing";
- // Classifier defined extras
- resultNames[current++] = "Summary";
- // add any additional measures
- for (int i=0;i<addm;i++) {
- resultNames[current++] = m_AdditionalMeasures[i];
- }
- if (current != overall_length) {
- throw new Error("ResultNames didn't fit RESULT_SIZE");
- }
- return resultNames;
- }
- /**
- * Gets the results for the supplied train and test datasets.
- *
- * @param train the training Instances.
- * @param test the testing Instances.
- * @return the results stored in an array. The objects stored in
- * the array may be Strings, Doubles, or null (for the missing value).
- * @exception Exception if a problem occurs while getting the results
- */
- public Object [] getResult(Instances train, Instances test)
- throws Exception {
- if (train.classAttribute().type() != Attribute.NOMINAL) {
- throw new Exception("Class attribute is not nominal!");
- }
- if (m_Classifier == null) {
- throw new Exception("No classifier has been specified");
- }
- int addm = (m_AdditionalMeasures != null)
- ? m_AdditionalMeasures.length
- : 0;
- int overall_length = RESULT_SIZE+addm;
- overall_length += NUM_IR_STATISTICS;
- Object [] result = new Object[overall_length];
- Evaluation eval = new Evaluation(train);
- long trainTimeStart = System.currentTimeMillis();
- m_Classifier.buildClassifier(train);
- long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
- long testTimeStart = System.currentTimeMillis();
- eval.evaluateModel(m_Classifier, test);
- long testTimeElapsed = System.currentTimeMillis() - testTimeStart;
- m_result = eval.toSummaryString();
- // The results stored are all per instance -- can be multiplied by the
- // number of instances to get absolute numbers
- int current = 0;
- result[current++] = new Double(eval.numInstances());
- result[current++] = new Double(eval.correct());
- result[current++] = new Double(eval.incorrect());
- result[current++] = new Double(eval.unclassified());
- result[current++] = new Double(eval.pctCorrect());
- result[current++] = new Double(eval.pctIncorrect());
- result[current++] = new Double(eval.pctUnclassified());
- result[current++] = new Double(eval.kappa());
- result[current++] = new Double(eval.meanAbsoluteError());
- result[current++] = new Double(eval.rootMeanSquaredError());
- result[current++] = new Double(eval.relativeAbsoluteError());
- result[current++] = new Double(eval.rootRelativeSquaredError());
- result[current++] = new Double(eval.SFPriorEntropy());
- result[current++] = new Double(eval.SFSchemeEntropy());
- result[current++] = new Double(eval.SFEntropyGain());
- result[current++] = new Double(eval.SFMeanPriorEntropy());
- result[current++] = new Double(eval.SFMeanSchemeEntropy());
- result[current++] = new Double(eval.SFMeanEntropyGain());
- // K&B stats
- result[current++] = new Double(eval.KBInformation());
- result[current++] = new Double(eval.KBMeanInformation());
- result[current++] = new Double(eval.KBRelativeInformation());
- // IR stats
- result[current++] = new Double(eval.truePositiveRate(m_IRclass));
- result[current++] = new Double(eval.numTruePositives(m_IRclass));
- result[current++] = new Double(eval.falsePositiveRate(m_IRclass));
- result[current++] = new Double(eval.numFalsePositives(m_IRclass));
- result[current++] = new Double(eval.trueNegativeRate(m_IRclass));
- result[current++] = new Double(eval.numTrueNegatives(m_IRclass));
- result[current++] = new Double(eval.falseNegativeRate(m_IRclass));
- result[current++] = new Double(eval.numFalseNegatives(m_IRclass));
- result[current++] = new Double(eval.precision(m_IRclass));
- result[current++] = new Double(eval.recall(m_IRclass));
- result[current++] = new Double(eval.fMeasure(m_IRclass));
- // Timing stats
- result[current++] = new Double(trainTimeElapsed / 1000.0);
- result[current++] = new Double(testTimeElapsed / 1000.0);
- if (m_Classifier instanceof Summarizable) {
- result[current++] = ((Summarizable)m_Classifier).toSummaryString();
- } else {
- result[current++] = null;
- }
- for (int i=0;i<addm;i++) {
- if (m_doesProduce[i]) {
- try {
- double dv = ((AdditionalMeasureProducer)m_Classifier).
- getMeasure(m_AdditionalMeasures[i]);
- Double value = new Double(dv);
- result[current++] = value;
- } catch (Exception ex) {
- System.err.println(ex);
- }
- } else {
- result[current++] = null;
- }
- }
- if (current != overall_length) {
- throw new Error("Results didn't fit RESULT_SIZE");
- }
- return result;
- }
- /**
- * Returns the tip text for this property
- * @return tip text for this property suitable for
- * displaying in the explorer/experimenter gui
- */
- public String classifierTipText() {
- return "The classifier to use.";
- }
- /**
- * Get the value of Classifier.
- *
- * @return Value of Classifier.
- */
- public Classifier getClassifier() {
- return m_Classifier;
- }
- /**
- * Sets the classifier.
- *
- * @param newClassifier the new classifier to use.
- */
- public void setClassifier(Classifier newClassifier) {
- m_Classifier = newClassifier;
- updateOptions();
- System.err.println("ClassifierSplitEvaluator: In set classifier");
- }
- /**
- * Get the value of ClassForIRStatistics.
- * @return Value of ClassForIRStatistics.
- */
- public int getClassForIRStatistics() {
- return m_IRclass;
- }
- /**
- * Set the value of ClassForIRStatistics.
- * @param v Value to assign to ClassForIRStatistics.
- */
- public void setClassForIRStatistics(int v) {
- m_IRclass = v;
- }
- /**
- * Updates the options that the current classifier is using.
- */
- protected void updateOptions() {
- if (m_Classifier instanceof OptionHandler) {
- m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Classifier)
- .getOptions());
- } else {
- m_ClassifierOptions = "";
- }
- if (m_Classifier instanceof Serializable) {
- ObjectStreamClass obs = ObjectStreamClass.lookup(m_Classifier
- .getClass());
- m_ClassifierVersion = "" + obs.getSerialVersionUID();
- } else {
- m_ClassifierVersion = "";
- }
- }
- /**
- * Set the Classifier to use, given it's class name. A new classifier will be
- * instantiated.
- *
- * @param newClassifier the Classifier class name.
- * @exception Exception if the class name is invalid.
- */
- public void setClassifierName(String newClassifierName) throws Exception {
- try {
- setClassifier((Classifier)Class.forName(newClassifierName)
- .newInstance());
- } catch (Exception ex) {
- throw new Exception("Can't find Classifier with class name: "
- + newClassifierName);
- }
- }
- /**
- * Gets the raw output from the classifier
- * @return the raw output from the classifier
- */
- public String getRawResultOutput() {
- StringBuffer result = new StringBuffer();
- if (m_Classifier == null) {
- return "<null> classifier";
- }
- result.append(toString());
- result.append("Classifier model: n"+m_Classifier.toString()+'n');
- // append the performance statistics
- if (m_result != null) {
- result.append(m_result);
- if (m_doesProduce != null) {
- for (int i=0;i<m_doesProduce.length;i++) {
- if (m_doesProduce[i]) {
- try {
- double dv = ((AdditionalMeasureProducer)m_Classifier).
- getMeasure(m_AdditionalMeasures[i]);
- Double value = new Double(dv);
- result.append(m_AdditionalMeasures[i]+" : "+value+'n');
- } catch (Exception ex) {
- System.err.println(ex);
- }
- }
- }
- }
- }
- return result.toString();
- }
- /**
- * Returns a text description of the split evaluator.
- *
- * @return a text description of the split evaluator.
- */
- public String toString() {
- String result = "ClassifierSplitEvaluator: ";
- if (m_Classifier == null) {
- return result + "<null> classifier";
- }
- return result + m_Classifier.getClass().getName() + " "
- + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")";
- }
- } // ClassifierSplitEvaluator