Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
DistributionMetaClusterer.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 6k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * DistributionMetaClusterer.java
- * Copyright (C) 2000 Intelligenesis Corp.
- *
- */
- package weka.clusterers;
- import java.util.Enumeration;
- import java.util.Random;
- import java.util.Vector;
- import weka.core.Attribute;
- import weka.core.Instance;
- import weka.core.Instances;
- import weka.core.Option;
- import weka.core.OptionHandler;
- import weka.core.Utils;
- /**
- * Class that wraps up a Clusterer and presents it as a DistributionClusterer
- * for ease of programmatically handling Clusterers in general -- only the
- * one predict method (distributionForInstance) need be worried about. The
- * distributions produced by this clusterer place a probability of 1 on the
- * class value predicted by the sub-clusterer.<p>
- *
- * Valid options are:<p>
- *
- * -W classname <br>
- * Specify the full class name of a sub-clusterer (required).<p>
- *
- * @author Richard Littin (richard@intelligenesis.net)
- * @version $Revision: 1.4 $
- */
- public class DistributionMetaClusterer extends DistributionClusterer
- implements OptionHandler {
- /** The clusterer. */
- private Clusterer m_Clusterer = new weka.clusterers.EM();
- /**
- * Builds the clusterer.
- *
- * @param insts the training data.
- * @exception Exception if a clusterer can't be built
- */
- public void buildClusterer(Instances insts) throws Exception {
- if (m_Clusterer == null) {
- throw new Exception("No base clusterer has been set!");
- }
- m_Clusterer.buildClusterer(insts);
- }
- /**
- * Returns the distribution for an instance.
- *
- * @exception Exception if the distribution can't be computed successfully
- */
- public double[] distributionForInstance(Instance inst) throws Exception {
- double[] result = new double[m_Clusterer.numberOfClusters()];
- int predictedCluster = m_Clusterer.clusterInstance(inst);
- result[predictedCluster] = 1.0;
- return result;
- }
- /**
- * Returns the density for an instance.
- *
- * @exception Exception if the distribution can't be computed successfully
- */
- public double densityForInstance(Instance inst) throws Exception {
- return Utils.sum(distributionForInstance(inst));
- }
- /**
- * Returns the number of clusters.
- *
- * @return the number of clusters generated for a training dataset.
- * @exception Exception if number of clusters could not be returned
- * successfully
- */
- public int numberOfClusters() throws Exception {
- return m_Clusterer.numberOfClusters();
- }
- /**
- * Prints the clusterers.
- */
- public String toString() {
- return "DistributionMetaClusterer: " + m_Clusterer.toString() + "n";
- }
- /**
- * Returns an enumeration describing the available options
- *
- * @return an enumeration of all the available options
- */
- public Enumeration listOptions() {
- Vector vec = new Vector(1);
- vec.addElement(new Option("tSets the base clusterer.",
- "W", 1, "-W <base clusterer>"));
- if (m_Clusterer != null) {
- try {
- vec.addElement(new Option("",
- "", 0, "nOptions specific to clusterer "
- + m_Clusterer.getClass().getName() + ":"));
- Enumeration enum = ((OptionHandler)m_Clusterer).listOptions();
- while (enum.hasMoreElements()) {
- vec.addElement(enum.nextElement());
- }
- } catch (Exception e) {
- }
- }
- return vec.elements();
- }
- /**
- * Parses a given list of options. Valid options are:<p>
- *
- * -W classname <br>
- * Specify the full class name of a learner as the basis for
- * the multiclassclusterer (required).<p>
- *
- * @param options the list of options as an array of strings
- * @exception Exception if an option is not supported
- */
- public void setOptions(String[] options) throws Exception {
- String clustererName = Utils.getOption('W', options);
- if (clustererName.length() == 0) {
- throw new Exception("A clusterer must be specified with"
- + " the -W option.");
- }
- setClusterer(Clusterer.forName(clustererName,
- Utils.partitionOptions(options)));
- }
- /**
- * Gets the current settings of the Clusterer.
- *
- * @return an array of strings suitable for passing to setOptions
- */
- public String [] getOptions() {
- String [] clustererOptions = new String [0];
- if ((m_Clusterer != null) &&
- (m_Clusterer instanceof OptionHandler)) {
- clustererOptions = ((OptionHandler)m_Clusterer).getOptions();
- }
- String [] options = new String [clustererOptions.length + 3];
- int current = 0;
- if (getClusterer() != null) {
- options[current++] = "-W";
- options[current++] = getClusterer().getClass().getName();
- }
- options[current++] = "--";
- System.arraycopy(clustererOptions, 0, options, current,
- clustererOptions.length);
- current += clustererOptions.length;
- while (current < options.length) {
- options[current++] = "";
- }
- return options;
- }
- /**
- * Set the base clusterer.
- *
- * @param newClusterer the Clusterer to use.
- */
- public void setClusterer(Clusterer newClusterer) {
- m_Clusterer = newClusterer;
- }
- /**
- * Get the clusterer used as the clusterer
- *
- * @return the clusterer used as the clusterer
- */
- public Clusterer getClusterer() {
- return m_Clusterer;
- }
- /**
- * Main method for testing this class.
- *
- * @param argv the options
- */
- public static void main(String [] argv) {
- try {
- DistributionClusterer scheme = new DistributionMetaClusterer();
- System.out.println(ClusterEvaluation.evaluateClusterer(scheme, argv));
- } catch (Exception e) {
- System.err.println(e.getMessage());
- }
- }
- }