Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
TwoClassStats.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 6k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * TwoClassStats.java
- * Copyright (C) 2000 Intelligenesis Corp.
- *
- */
- package weka.classifiers.evaluation;
- /**
- * Encapsulates performance functions for two-class problems.
- *
- * @author Len Trigg (len@intelligenesis.net)
- * @version $Revision: 1.5 $
- */
- public class TwoClassStats {
- /** The names used when converting this object to a confusion matrix */
- private final static String [] CATEGORY_NAMES = {"negative", "positive"};
- /** Pos predicted as pos */
- private double m_TruePos;
- /** Neg predicted as pos */
- private double m_FalsePos;
- /** Neg predicted as neg */
- private double m_TrueNeg;
- /** Pos predicted as neg */
- private double m_FalseNeg;
- /**
- * Creates the TwoClassStats with the given initial performance values.
- *
- * @param tp the number of correctly classified positives
- * @param fp the number of incorrectly classified negatives
- * @param tn the number of correctly classified negatives
- * @param fn the number of incorrectly classified positives
- */
- public TwoClassStats(double tp, double fp, double tn, double fn) {
- setTruePositive(tp);
- setFalsePositive(fp);
- setTrueNegative(tn);
- setFalseNegative(fn);
- }
- /** Sets the number of positive instances predicted as positive */
- public void setTruePositive(double tp) { m_TruePos = tp; }
- /** Sets the number of negative instances predicted as positive */
- public void setFalsePositive(double fp) { m_FalsePos = fp; }
- /** Sets the number of negative instances predicted as negative */
- public void setTrueNegative(double tn) { m_TrueNeg = tn; }
- /** Sets the number of positive instances predicted as negative */
- public void setFalseNegative(double fn) { m_FalseNeg = fn; }
- /** Gets the number of positive instances predicted as positive */
- public double getTruePositive() { return m_TruePos; }
- /** Gets the number of negative instances predicted as positive */
- public double getFalsePositive() { return m_FalsePos; }
- /** Gets the number of negative instances predicted as negative */
- public double getTrueNegative() { return m_TrueNeg; }
- /** Gets the number of positive instances predicted as negative */
- public double getFalseNegative() { return m_FalseNeg; }
- /**
- * Calculate the true positive rate.
- * This is defined as<p>
- * <pre>
- * correctly classified positives
- * ------------------------------
- * total positives
- * </pre>
- *
- * @return the true positive rate
- */
- public double getTruePositiveRate() {
- if (0 == (m_TruePos + m_FalseNeg)) {
- return 0;
- } else {
- return m_TruePos / (m_TruePos + m_FalseNeg);
- }
- }
- /**
- * Calculate the false positive rate.
- * This is defined as<p>
- * <pre>
- * incorrectly classified negatives
- * --------------------------------
- * total negatives
- * </pre>
- *
- * @return the false positive rate
- */
- public double getFalsePositiveRate() {
- if (0 == (m_FalsePos + m_TrueNeg)) {
- return 0;
- } else {
- return m_FalsePos / (m_FalsePos + m_TrueNeg);
- }
- }
- /**
- * Calculate the precision.
- * This is defined as<p>
- * <pre>
- * correctly classified positives
- * ------------------------------
- * total predicted as positive
- * </pre>
- *
- * @return the precision
- */
- public double getPrecision() {
- if (0 == (m_TruePos + m_FalsePos)) {
- return 0;
- } else {
- return m_TruePos / (m_TruePos + m_FalsePos);
- }
- }
- /**
- * Calculate the recall.
- * This is defined as<p>
- * <pre>
- * correctly classified positives
- * ------------------------------
- * total positives
- * </pre><p>
- * (Which is also the same as the truePositiveRate.)
- *
- * @return the recall
- */
- public double getRecall() { return getTruePositiveRate(); }
- /**
- * Calculate the F-Measure.
- * This is defined as<p>
- * <pre>
- * 2 * recall * precision
- * ----------------------
- * recall + precision
- * </pre>
- *
- * @return the F-Measure
- */
- public double getFMeasure() {
- double precision = getPrecision();
- double recall = getRecall();
- if ((precision + recall) == 0) {
- return 0;
- }
- return 2 * precision * recall / (precision + recall);
- }
- /**
- * Calculate the fallout.
- * This is defined as<p>
- * <pre>
- * incorrectly classified negatives
- * --------------------------------
- * total predicted as positive
- * </pre>
- *
- * @return the fallout
- */
- public double getFallout() {
- if (0 == (m_TruePos + m_FalsePos)) {
- return 0;
- } else {
- return m_FalsePos / (m_TruePos + m_FalsePos);
- }
- }
- /**
- * Generates a <code>ConfusionMatrix</code> representing the current
- * two-class statistics, using class names "negative" and "positive".
- *
- * @return a <code>ConfusionMatrix</code>.
- */
- public ConfusionMatrix getConfusionMatrix() {
- ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES);
- cm.setElement(0, 0, m_TrueNeg);
- cm.setElement(0, 1, m_FalsePos);
- cm.setElement(1, 0, m_FalseNeg);
- cm.setElement(1, 1, m_TruePos);
- return cm;
- }
- /**
- * Returns a string containing the various performance measures
- * for the current object
- */
- public String toString() {
- StringBuffer res = new StringBuffer();
- res.append(getTruePositive()).append(' ');
- res.append(getFalseNegative()).append(' ');
- res.append(getTrueNegative()).append(' ');
- res.append(getFalsePositive()).append(' ');
- res.append(getFalsePositiveRate()).append(' ');
- res.append(getTruePositiveRate()).append(' ');
- res.append(getPrecision()).append(' ');
- res.append(getRecall()).append(' ');
- res.append(getFMeasure()).append(' ');
- res.append(getFallout()).append(' ');
- return res.toString();
- }
- }