Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
PruneableDecList.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 5k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * PruneableDecList.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.classifiers.j48;
- import weka.core.*;
- /**
- * Class for handling a partial tree structure that
- * can be pruned using a pruning set.
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.4 $
- */
- public class PruneableDecList extends ClassifierDecList{
- /** Minimum number of objects */
- private int m_MinNumObj;
- /** To compute the entropy. */
- private static EntropySplitCrit m_splitCrit = new EntropySplitCrit();
- /**
- * Constructor for pruneable partial tree structure.
- *
- * @param toSelectLocModel selection method for local splitting model
- * @param minNum minimum number of objects in leaf
- */
- public PruneableDecList(ModelSelection toSelectLocModel,
- int minNum) {
- super(toSelectLocModel);
- m_MinNumObj = minNum;
- }
- /**
- * Method for building a pruned partial tree.
- *
- * @exception Exception if tree can't be built successfully
- */
- public void buildRule(Instances train,
- Instances test) throws Exception {
- buildDecList(train, test, false);
- cleanup(new Instances(train, 0));
- }
- /**
- * Method for choosing a subset to expand.
- */
- public final int chooseIndex() {
- int minIndex = -1;
- double estimated, min = Double.MAX_VALUE;
- int i, j;
- for (i = 0; i < m_sons.length; i++)
- if (son(i) == null){
- if (Utils.sm(localModel().distribution().perBag(i),
- (double)m_MinNumObj))
- estimated = Double.MAX_VALUE;
- else{
- estimated = 0;
- for (j = 0; j < localModel().distribution().numClasses(); j++)
- estimated -= m_splitCrit.logFunc(localModel().distribution().
- perClassPerBag(i,j));
- estimated += m_splitCrit.logFunc(localModel().distribution().
- perBag(i));
- estimated /= localModel().distribution().perBag(i);
- }
- if (Utils.smOrEq(estimated,0)) // This is certainly a good one.
- return i;
- if (Utils.sm(estimated,min)){
- min = estimated;
- minIndex = i;
- }
- }
- return minIndex;
- }
- /**
- * Choose last index (ie. choose rule).
- */
- public final int chooseLastIndex() {
- int minIndex = 0;
- double estimated, min = Double.MAX_VALUE;
- if (!m_isLeaf)
- for (int i = 0; i < m_sons.length; i++)
- if (son(i) != null){
- if (Utils.grOrEq(localModel().distribution().perBag(i),
- (double)m_MinNumObj)) {
- estimated = son(i).getSizeOfBranch();
- if (Utils.sm(estimated,min)){
- min = estimated;
- minIndex = i;
- }
- }
- }
- return minIndex;
- }
- /**
- * Returns a newly created tree.
- *
- * @param data and selection method for local models.
- * @exception Exception if something goes wrong
- */
- protected ClassifierDecList getNewDecList(Instances train, Instances test,
- boolean leaf) throws Exception {
- PruneableDecList newDecList =
- new PruneableDecList(m_toSelectModel, m_MinNumObj);
- newDecList.buildDecList((Instances)train, test, leaf);
- return newDecList;
- }
- /**
- * Prunes the end of the rule.
- */
- protected void pruneEnd() throws Exception {
- double errorsLeaf, errorsTree;
- errorsTree = errorsForTree();
- errorsLeaf = errorsForLeaf();
- if (Utils.smOrEq(errorsLeaf,errorsTree)){
- m_isLeaf = true;
- m_sons = null;
- m_localModel = new NoSplit(localModel().distribution());
- }
- }
- /**
- * Computes error estimate for tree.
- */
- private double errorsForTree() throws Exception {
- Distribution test;
- if (m_isLeaf)
- return errorsForLeaf();
- else {
- double error = 0;
- for (int i = 0; i < m_sons.length; i++)
- if (Utils.eq(son(i).localModel().distribution().total(),0)) {
- error += m_test.perBag(i)-
- m_test.perClassPerBag(i,localModel().distribution().
- maxClass());
- } else
- error += son(i).errorsForTree();
- return error;
- }
- }
- /**
- * Computes estimated errors for leaf.
- */
- private double errorsForLeaf() throws Exception {
- return m_test.total()-
- m_test.perClass(localModel().distribution().maxClass());
- }
- /**
- * Returns the number of instances covered by a branch
- */
- private double getSizeOfBranch() {
- if (m_isLeaf) {
- return -localModel().distribution().total();
- } else
- return son(indeX).getSizeOfBranch();
- }
- /**
- * Method just exists to make program easier to read.
- */
- private ClassifierSplitModel localModel() {
- return (ClassifierSplitModel)m_localModel;
- }
- /**
- * Method just exists to make program easier to read.
- */
- private PruneableDecList son(int index) {
- return (PruneableDecList)m_sons[index];
- }
- }