Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
ClassifierSplitModel.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 7k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * ClassifierSplitModel.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.classifiers.j48;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- /**
- * Abstract class for classification models that can be used
- * recursively to split the data.
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.6 $
- */
- public abstract class ClassifierSplitModel implements Cloneable, Serializable {
- /** Distribution of class values. */
- protected Distribution m_distribution;
- /** Number of created subsets. */
- protected int m_numSubsets;
- /**
- * Allows to clone a model (shallow copy).
- */
- public Object clone() {
- Object clone = null;
- try {
- clone = super.clone();
- } catch (CloneNotSupportedException e) {
- }
- return clone;
- }
- /**
- * Builds the classifier split model for the given set of instances.
- *
- * @exception Exception if something goes wrong
- */
- abstract public void buildClassifier(Instances instances) throws Exception;
- /**
- * Checks if generated model is valid.
- */
- public final boolean checkModel() {
- if (m_numSubsets > 0)
- return true;
- else
- return false;
- }
- /**
- * Classifies a given instance.
- *
- * @exception Exception if something goes wrong
- */
- public final double classifyInstance(Instance instance)
- throws Exception {
- int theSubset;
- theSubset = whichSubset(instance);
- if (theSubset > -1)
- return (double)m_distribution.maxClass(theSubset);
- else
- return (double)m_distribution.maxClass();
- }
- /**
- * Gets class probability for instance.
- *
- * @exception Exception if something goes wrong
- */
- public double classProb(int classIndex, Instance instance, int theSubset)
- throws Exception {
- if (theSubset > -1) {
- return m_distribution.prob(classIndex,theSubset);
- } else {
- double [] weights = weights(instance);
- if (weights == null) {
- return m_distribution.prob(classIndex);
- } else {
- double prob = 0;
- for (int i = 0; i < weights.length; i++) {
- prob += weights[i] * m_distribution.prob(classIndex, i);
- }
- return prob;
- }
- }
- }
- /**
- * Gets class probability for instance.
- *
- * @exception Exception if something goes wrong
- */
- public double classProbLaplace(int classIndex, Instance instance,
- int theSubset) throws Exception {
- if (theSubset > -1) {
- return m_distribution.laplaceProb(classIndex, theSubset);
- } else {
- double [] weights = weights(instance);
- if (weights == null) {
- return m_distribution.laplaceProb(classIndex);
- } else {
- double prob = 0;
- for (int i = 0; i < weights.length; i++) {
- prob += weights[i] * m_distribution.laplaceProb(classIndex, i);
- }
- return prob;
- }
- }
- }
- /**
- * Returns coding costs of model. Returns 0 if not overwritten.
- */
- public double codingCost() {
- return 0;
- }
- /**
- * Returns the distribution of class values induced by the model.
- */
- public final Distribution distribution() {
- return m_distribution;
- }
- /**
- * Prints left side of condition satisfied by instances.
- *
- * @param data the data.
- */
- abstract public String leftSide(Instances data);
- /**
- * Prints left side of condition satisfied by instances in subset index.
- */
- abstract public String rightSide(int index,Instances data);
- /**
- * Prints label for subset index of instances (eg class).
- *
- * @exception Exception if something goes wrong
- */
- public final String dumpLabel(int index,Instances data) throws Exception {
- StringBuffer text;
- text = new StringBuffer();
- text.append(((Instances)data).classAttribute().
- value(m_distribution.maxClass(index)));
- text.append(" ("+Utils.roundDouble(m_distribution.perBag(index),2));
- if (Utils.gr(m_distribution.numIncorrect(index),0))
- text.append("/"+Utils.roundDouble(m_distribution.numIncorrect(index),2));
- text.append(")");
- return text.toString();
- }
- public final String sourceClass(int index, Instances data) throws Exception {
- System.err.println("sourceClass");
- return (new StringBuffer(m_distribution.maxClass(index))).toString();
- }
- public abstract String sourceExpression(int index, Instances data);
- /**
- * Prints the split model.
- *
- * @exception Exception if something goes wrong
- */
- public final String dumpModel(Instances data) throws Exception {
- StringBuffer text;
- int i;
- text = new StringBuffer();
- for (i=0;i<m_numSubsets;i++) {
- text.append(leftSide(data)+rightSide(i,data)+": ");
- text.append(dumpLabel(i,data)+"n");
- }
- return text.toString();
- }
- /**
- * Returns the number of created subsets for the split.
- */
- public final int numSubsets() {
- return m_numSubsets;
- }
- /**
- * Sets distribution associated with model.
- */
- public void resetDistribution(Instances data) throws Exception {
- m_distribution = new Distribution(data, this);
- }
- /**
- * Splits the given set of instances into subsets.
- *
- * @exception Exception if something goes wrong
- */
- public final Instances [] split(Instances data)
- throws Exception {
- Instances [] instances = new Instances [m_numSubsets];
- double [] weights;
- double newWeight;
- Instance instance;
- int subset, i, j;
- for (j=0;j<m_numSubsets;j++)
- instances[j] = new Instances((Instances)data,
- data.numInstances());
- for (i = 0; i < data.numInstances(); i++) {
- instance = ((Instances) data).instance(i);
- weights = weights(instance);
- subset = whichSubset(instance);
- if (subset > -1)
- instances[subset].add(instance);
- else
- for (j = 0; j < m_numSubsets; j++)
- if (Utils.gr(weights[j],0)) {
- newWeight = weights[j]*instance.weight();
- instances[j].add(instance);
- instances[j].lastInstance().setWeight(newWeight);
- }
- }
- for (j = 0; j < m_numSubsets; j++)
- instances[j].compactify();
- return instances;
- }
- /**
- * Returns weights if instance is assigned to more than one subset.
- * Returns null if instance is only assigned to one subset.
- */
- abstract public double [] weights(Instance instance);
- /**
- * Returns index of subset instance is assigned to.
- * Returns -1 if instance is assigned to more than one subset.
- *
- * @exception Exception if something goes wrong
- */
- abstract public int whichSubset(Instance instance) throws Exception;
- }