Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
MakeDecList.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 6k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * MakeDecList.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.classifiers.j48;
- import java.util.*;
- import java.io.*;
- import weka.core.*;
- import weka.classifiers.*;
- /**
- * Class for handling a decision list.
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.7 $
- */
- public class MakeDecList implements Serializable {
- /** Vector storing the rules. */
- private Vector theRules;
- /** The confidence for C45-type pruning. */
- private double CF = 0.25f;
- /** Minimum number of objects */
- private int minNumObj;
- /** The model selection method. */
- private ModelSelection toSelectModeL;
- /** How many subsets of equal size? One used for pruning, the rest for training. */
- private int numSetS = 3;
- /** Use reduced error pruning? */
- private boolean reducedErrorPruning = false;
- /**
- * Constructor for dec list pruned using C4.5 pruning.
- */
- public MakeDecList(ModelSelection toSelectLocModel, double cf,
- int minNum){
- toSelectModeL = toSelectLocModel;
- CF = cf;
- reducedErrorPruning = false;
- minNumObj = minNum;
- }
- /**
- * Constructor for dec list pruned using hold-out pruning.
- */
- public MakeDecList(ModelSelection toSelectLocModel, int num,
- int minNum){
- toSelectModeL = toSelectLocModel;
- numSetS = num;
- reducedErrorPruning = true;
- minNumObj = minNum;
- }
- /**
- * Builds dec list.
- *
- * @exception Exception if dec list can't be built successfully
- */
- public void buildClassifier(Instances data) throws Exception{
- ClassifierDecList currentRule;
- double currentWeight;
- Instances oldGrowData, newGrowData, oldPruneData,
- newPruneData;
- int numRules = 0;
- if (data.classAttribute().isNumeric())
- throw new UnsupportedClassTypeException("Class is numeric!");
- if (data.checkForStringAttributes()) {
- throw new UnsupportedAttributeTypeException("Can't handle string attributes!");
- }
- theRules = new Vector();
- data = new Instances(data);
- data.deleteWithMissingClass();
- if (data.numInstances() == 0)
- throw new Exception("No training instances/Only instances with missing class!");
- if (reducedErrorPruning) {
- data.stratify(numSetS);
- oldGrowData = data.trainCV(numSetS, numSetS - 1);
- oldPruneData = data.testCV(numSetS, numSetS - 1);
- } else {
- oldGrowData = data;
- oldPruneData = null;
- }
- while (Utils.gr(oldGrowData.numInstances(),0)){
- // Create rule
- if (reducedErrorPruning) {
- currentRule = new PruneableDecList(toSelectModeL,
- minNumObj);
- ((PruneableDecList)currentRule).buildRule(oldGrowData,
- oldPruneData);
- } else {
- currentRule = new C45PruneableDecList(toSelectModeL, CF,
- minNumObj);
- ((C45PruneableDecList)currentRule).buildRule(oldGrowData);
- }
- numRules++;
- // Remove instances from growing data
- newGrowData = new Instances(oldGrowData,
- oldGrowData.numInstances());
- Enumeration enum = oldGrowData.enumerateInstances();
- while (enum.hasMoreElements()) {
- Instance instance = (Instance) enum.nextElement();
- currentWeight = currentRule.weight(instance);
- if (Utils.sm(currentWeight,1)) {
- instance.setWeight(instance.weight()*(1-currentWeight));
- newGrowData.add(instance);
- }
- }
- newGrowData.compactify();
- oldGrowData = newGrowData;
- // Remove instances from pruning data
- if (reducedErrorPruning) {
- newPruneData = new Instances(oldPruneData,
- oldPruneData.numInstances());
- enum = oldPruneData.enumerateInstances();
- while (enum.hasMoreElements()) {
- Instance instance = (Instance) enum.nextElement();
- currentWeight = currentRule.weight(instance);
- if (Utils.sm(currentWeight,1)) {
- instance.setWeight(instance.weight()*(1-currentWeight));
- newPruneData.add(instance);
- }
- }
- newPruneData.compactify();
- oldPruneData = newPruneData;
- }
- theRules.addElement(currentRule);
- }
- }
- /**
- * Outputs the classifier into a string.
- */
- public String toString(){
- StringBuffer text = new StringBuffer();
- for (int i=0;i<theRules.size();i++)
- text.append((ClassifierDecList)theRules.elementAt(i)+"n");
- text.append("Number of Rules : t"+theRules.size()+"n");
- return text.toString();
- }
- /**
- * Classifies an instance.
- *
- * @exception Exception if instance can't be classified
- */
- public double classifyInstance(Instance instance)
- throws Exception {
- double maxProb = -1;
- double [] sumProbs;
- int maxIndex = 0;
- sumProbs = distributionForInstance(instance);
- for (int j = 0; j < sumProbs.length; j++) {
- if (Utils.gr(sumProbs[j],maxProb)){
- maxIndex = j;
- maxProb = sumProbs[j];
- }
- }
- return (double)maxIndex;
- }
- /**
- * Returns the class distribution for an instance.
- *
- * @exception Exception if distribution can't be computed
- */
- public double[] distributionForInstance(Instance instance)
- throws Exception {
- double [] currentProbs = null;
- double [] sumProbs;
- double currentWeight, weight = 1;
- int i,j;
- // Get probabilities.
- sumProbs = new double [instance.numClasses()];
- i = 0;
- while (Utils.gr(weight,0)){
- currentWeight =
- ((ClassifierDecList)theRules.elementAt(i)).weight(instance);
- if (Utils.gr(currentWeight,0)) {
- currentProbs = ((ClassifierDecList)theRules.elementAt(i)).
- distributionForInstance(instance);
- for (j = 0; j < sumProbs.length; j++)
- sumProbs[j] += weight*currentProbs[j];
- weight = weight*(1-currentWeight);
- }
- i++;
- }
- return sumProbs;
- }
- /**
- * Outputs the number of rules in the classifier.
- */
- public int numRules(){
- return theRules.size();
- }
- }