Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
MetaCost.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 16k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * MetaCost.java
- * Copyright (C) 1999 Intelligenesis Corp.
- *
- */
- package weka.classifiers;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- import weka.filters.Filter;
- /**
- * This metaclassifier makes its base classifier cost-sensitive using the
- * method specified in <p>
- *
- * Pedro Domingos (1999). <i>MetaCost: A general method for making classifiers
- * cost-sensitive</i>, Proceedings of the Fifth International Conference on
- * Knowledge Discovery and Data Mining, pp. 155-164. Also available online at
- * <a href="http://www.cs.washington.edu/homes/pedrod/kdd99.ps.gz">
- * http://www.cs.washington.edu/homes/pedrod/kdd99.ps.gz</a>. <p>
- *
- * This classifier should produce similar results to one created by
- * passing the base learner to Bagging, which is in turn passed to a
- * CostSensitiveClassifier operating on minimum expected cost. The difference
- * is that MetaCost produces a single cost-sensitive classifier of the
- * base learner, giving the benefits of fast classification and interpretable
- * output (if the base learner itself is interpretable). This implementation
- * uses all bagging iterations when reclassifying training data (the MetaCost
- * paper reports a marginal improvement when only those iterations containing
- * each training instance are used in reclassifying that instance). <p>
- *
- * Valid options are:<p>
- *
- * -W classname <br>
- * Specify the full class name of a classifier (required).<p>
- *
- * -C cost file <br>
- * File name of a cost matrix to use. If this is not supplied, a cost
- * matrix will be loaded on demand. The name of the on-demand file
- * is the relation name of the training data plus ".cost", and the
- * path to the on-demand file is specified with the -D option.<p>
- *
- * -D directory <br>
- * Name of a directory to search for cost files when loading costs on demand
- * (default current directory). <p>
- *
- * -I num <br>
- * Set the number of bagging iterations (default 10). <p>
- *
- * -S seed <br>
- * Random number seed used when reweighting by resampling (default 1).<p>
- *
- * -P num <br>
- * Size of each bag, as a percentage of the training size (default 100). <p>
- *
- * Options after -- are passed to the designated classifier.<p>
- *
- * @author Len Trigg (len@intelligenesis.net)
- * @version $Revision: 1.7 $
- */
- public class MetaCost extends Classifier
- implements OptionHandler {
- /* Specify possible sources of the cost matrix */
- public static final int MATRIX_ON_DEMAND = 1;
- public static final int MATRIX_SUPPLIED = 2;
- public static final Tag [] TAGS_MATRIX_SOURCE = {
- new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"),
- new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix")
- };
- /** Indicates the current cost matrix source */
- protected int m_MatrixSource = MATRIX_ON_DEMAND;
- /**
- * The directory used when loading cost files on demand, null indicates
- * current directory
- */
- protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));
- /** The name of the cost file, for command line options */
- protected String m_CostFile;
- /** The classifier */
- protected Classifier m_Classifier = new weka.classifiers.ZeroR();
- /** The cost matrix */
- protected CostMatrix m_CostMatrix = new CostMatrix(1);
- /** The number of iterations. */
- protected int m_NumIterations = 10;
- /** Seed for reweighting using resampling. */
- protected int m_Seed = 1;
- /** The size of each bag sample, as a percentage of the training size */
- protected int m_BagSizePercent = 100;
- /**
- * Returns an enumeration describing the available options
- *
- * @return an enumeration of all the available options
- */
- public Enumeration listOptions() {
- Vector newVector = new Vector(6);
- newVector.addElement(new Option(
- "tNumber of bagging iterations.n"
- + "t(default 10)",
- "I", 1, "-I <num>"));
- newVector.addElement(new Option(
- "tFull class name of classifier to use. (required)n"
- + "teg: weka.classifiers.NaiveBayes",
- "W", 1, "-W <class name>"));
- newVector.addElement(new Option(
- "tFile name of a cost matrix to use. If this is not supplied,n"
- +"ta cost matrix will be loaded on demand. The name of then"
- +"ton-demand file is the relation name of the training datan"
- +"tplus ".cost", and the path to the on-demand file isn"
- +"tspecified with the -D option.",
- "C", 1, "-C <cost file name>"));
- newVector.addElement(new Option(
- "tName of a directory to search for cost files when loadingn"
- +"tcosts on demand (default current directory).",
- "D", 1, "-D <directory>"));
- newVector.addElement(new Option(
- "tSeed used when reweighting via resampling. (Default 1)",
- "S", 1, "-S <num>"));
- newVector.addElement(new Option(
- "tSize of each bag, as a percentage of then"
- + "ttraining set size. (default 100)",
- "P", 1, "-P"));
- return newVector.elements();
- }
- /**
- * Parses a given list of options. Valid options are:<p>
- *
- * -W classname <br>
- * Specify the full class name of a classifier (required).<p>
- *
- * -C cost file <br>
- * File name of a cost matrix to use. If this is not supplied, a cost
- * matrix will be loaded on demand. The name of the on-demand file
- * is the relation name of the training data plus ".cost", and the
- * path to the on-demand file is specified with the -D option.<p>
- *
- * -D directory <br>
- * Name of a directory to search for cost files when loading costs on demand
- * (default current directory). <p>
- *
- * -I num <br>
- * Set the number of bagging iterations (default 10). <p>
- *
- * -S seed <br>
- * Random number seed used when reweighting by resampling (default 1).<p>
- *
- * -P num <br>
- * Size of each bag, as a percentage of the training size (default 100). <p>
- *
- * Options after -- are passed to the designated classifier.<p>
- *
- * @param options the list of options as an array of strings
- * @exception Exception if an option is not supported
- */
- public void setOptions(String[] options) throws Exception {
- String bagIterations = Utils.getOption('I', options);
- if (bagIterations.length() != 0) {
- setNumIterations(Integer.parseInt(bagIterations));
- } else {
- setNumIterations(10);
- }
- String seedString = Utils.getOption('S', options);
- if (seedString.length() != 0) {
- setSeed(Integer.parseInt(seedString));
- } else {
- setSeed(1);
- }
- String bagSize = Utils.getOption('P', options);
- if (bagSize.length() != 0) {
- setBagSizePercent(Integer.parseInt(bagSize));
- } else {
- setBagSizePercent(100);
- }
- String classifierName = Utils.getOption('W', options);
- if (classifierName.length() == 0) {
- throw new Exception("A classifier must be specified with"
- + " the -W option.");
- }
- setClassifier(Classifier.forName(classifierName,
- Utils.partitionOptions(options)));
- String costFile = Utils.getOption('C', options);
- if (costFile.length() != 0) {
- setCostMatrix(new CostMatrix(new BufferedReader(
- new FileReader(costFile))));
- setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,
- TAGS_MATRIX_SOURCE));
- m_CostFile = costFile;
- } else {
- setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND,
- TAGS_MATRIX_SOURCE));
- }
- String demandDir = Utils.getOption('D', options);
- if (demandDir.length() != 0) {
- setOnDemandDirectory(new File(demandDir));
- }
- }
- /**
- * Gets the current settings of the Classifier.
- *
- * @return an array of strings suitable for passing to setOptions
- */
- public String [] getOptions() {
- String [] classifierOptions = new String [0];
- if ((m_Classifier != null) &&
- (m_Classifier instanceof OptionHandler)) {
- classifierOptions = ((OptionHandler)m_Classifier).getOptions();
- }
- String [] options = new String [classifierOptions.length + 12];
- int current = 0;
- if (m_MatrixSource == MATRIX_SUPPLIED) {
- if (m_CostFile != null) {
- options[current++] = "-C";
- options[current++] = "" + m_CostFile;
- }
- } else {
- options[current++] = "-D";
- options[current++] = "" + getOnDemandDirectory();
- }
- options[current++] = "-I"; options[current++] = "" + getNumIterations();
- options[current++] = "-S"; options[current++] = "" + getSeed();
- options[current++] = "-P"; options[current++] = "" + getBagSizePercent();
- if (getClassifier() != null) {
- options[current++] = "-W";
- options[current++] = getClassifier().getClass().getName();
- }
- options[current++] = "--";
- System.arraycopy(classifierOptions, 0, options, current,
- classifierOptions.length);
- current += classifierOptions.length;
- while (current < options.length) {
- options[current++] = "";
- }
- return options;
- }
- /**
- * Gets the source location method of the cost matrix. Will be one of
- * MATRIX_ON_DEMAND or MATRIX_SUPPLIED.
- *
- * @return the cost matrix source.
- */
- public SelectedTag getCostMatrixSource() {
- return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE);
- }
- /**
- * Sets the source location of the cost matrix. Values other than
- * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored.
- *
- * @param newMethod the cost matrix location method.
- */
- public void setCostMatrixSource(SelectedTag newMethod) {
- if (newMethod.getTags() == TAGS_MATRIX_SOURCE) {
- m_MatrixSource = newMethod.getSelectedTag().getID();
- }
- }
- /**
- * Returns the directory that will be searched for cost files when
- * loading on demand.
- *
- * @return The cost file search directory.
- */
- public File getOnDemandDirectory() {
- return m_OnDemandDirectory;
- }
- /**
- * Sets the directory that will be searched for cost files when
- * loading on demand.
- *
- * @param newDir The cost file search directory.
- */
- public void setOnDemandDirectory(File newDir) {
- if (newDir.isDirectory()) {
- m_OnDemandDirectory = newDir;
- } else {
- m_OnDemandDirectory = new File(newDir.getParent());
- }
- m_MatrixSource = MATRIX_ON_DEMAND;
- }
- /**
- * Sets the distribution classifier
- *
- * @param classifier the distribution classifier with all options set.
- */
- public void setClassifier(Classifier classifier) {
- m_Classifier = classifier;
- }
- /**
- * Gets the distribution classifier used.
- *
- * @return the classifier
- */
- public Classifier getClassifier() {
- return m_Classifier;
- }
- /**
- * Gets the classifier specification string, which contains the class name of
- * the classifier and any options to the classifier
- *
- * @return the classifier string.
- */
- protected String getClassifierSpec() {
- Classifier c = getClassifier();
- if (c instanceof OptionHandler) {
- return c.getClass().getName() + " "
- + Utils.joinOptions(((OptionHandler)c).getOptions());
- }
- return c.getClass().getName();
- }
- /**
- * Gets the size of each bag, as a percentage of the training set size.
- *
- * @return the bag size, as a percentage.
- */
- public int getBagSizePercent() {
- return m_BagSizePercent;
- }
- /**
- * Sets the size of each bag, as a percentage of the training set size.
- *
- * @param newBagSizePercent the bag size, as a percentage.
- */
- public void setBagSizePercent(int newBagSizePercent) {
- m_BagSizePercent = newBagSizePercent;
- }
- /**
- * Sets the number of bagging iterations
- */
- public void setNumIterations(int numIterations) {
- m_NumIterations = numIterations;
- }
- /**
- * Gets the number of bagging iterations
- *
- * @return the maximum number of bagging iterations
- */
- public int getNumIterations() {
- return m_NumIterations;
- }
- /**
- * Gets the misclassification cost matrix.
- *
- * @return the cost matrix
- */
- public CostMatrix getCostMatrix() {
- return m_CostMatrix;
- }
- /**
- * Sets the misclassification cost matrix.
- *
- * @param the cost matrix
- */
- public void setCostMatrix(CostMatrix newCostMatrix) {
- m_CostMatrix = newCostMatrix;
- m_MatrixSource = MATRIX_SUPPLIED;
- }
- /**
- * Set seed for resampling.
- *
- * @param seed the seed for resampling
- */
- public void setSeed(int seed) {
- m_Seed = seed;
- }
- /**
- * Get seed for resampling.
- *
- * @return the seed for resampling
- */
- public int getSeed() {
- return m_Seed;
- }
- /**
- * Builds the model of the base learner.
- *
- * @param data the training data
- * @exception Exception if the classifier could not be built successfully
- */
- public void buildClassifier(Instances data) throws Exception {
- if (m_Classifier == null) {
- throw new Exception("No base classifier has been set!");
- }
- if (!data.classAttribute().isNominal()) {
- throw new Exception("Class attribute must be nominal!");
- }
- if (m_MatrixSource == MATRIX_ON_DEMAND) {
- String costName = data.relationName() + CostMatrix.FILE_EXTENSION;
- File costFile = new File(getOnDemandDirectory(), costName);
- if (!costFile.exists()) {
- throw new Exception("On-demand cost file doesn't exist: " + costFile);
- }
- setCostMatrix(new CostMatrix(new BufferedReader(
- new FileReader(costFile))));
- }
- // Set up the bagger
- Bagging bagger = new Bagging();
- bagger.setClassifier(getClassifier());
- bagger.setSeed(getSeed());
- bagger.setNumIterations(getNumIterations());
- bagger.setBagSizePercent(getBagSizePercent());
- bagger.buildClassifier(data);
- // Use the bagger to reassign class values according to minimum expected
- // cost
- Instances newData = new Instances(data);
- for (int i = 0; i < newData.numInstances(); i++) {
- Instance current = newData.instance(i);
- double [] pred = bagger.distributionForInstance(current);
- int minCostPred = Utils.minIndex(m_CostMatrix.expectedCosts(pred));
- current.setClassValue(minCostPred);
- }
- // Build a classifier using the reassigned data
- m_Classifier.buildClassifier(newData);
- }
- /**
- * Classifies a given test instance.
- *
- * @param instance the instance to be classified
- * @exception Exception if instance could not be classified
- * successfully
- */
- public double classifyInstance(Instance instance) throws Exception {
- return m_Classifier.classifyInstance(instance);
- }
- /**
- * Output a representation of this classifier
- */
- public String toString() {
- if (m_Classifier == null) {
- return "MetaCost: No model built yet.";
- }
- String result = "MetaCost cost sensitive classifier induction";
- result += "nOptions: " + Utils.joinOptions(getOptions());
- result += "nBase learner: " + getClassifierSpec()
- + "nnClassifier Modeln"
- + m_Classifier.toString()
- + "nnCost Matrixn"
- + m_CostMatrix.toString();
- return result;
- }
- /**
- * Main method for testing this class.
- *
- * @param argv should contain the following arguments:
- * -t training file [-T test file] [-c class index]
- */
- public static void main(String [] argv) {
- try {
- System.out.println(Evaluation
- .evaluateModel(new MetaCost(),
- argv));
- } catch (Exception e) {
- System.err.println(e.getMessage());
- }
- }
- }