Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
KernelDensity.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 6k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * KernelDensity.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.classifiers;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- /**
- * Class for building and using a very simple kernel density classifier.
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.6 $
- */
- public class KernelDensity extends DistributionClassifier {
- /** The number of instances in each class (null if class numeric). */
- private double [] m_Counts;
- /** The instances used for "training". */
- private Instances m_Instances;
- /** The minimum values for numeric attributes. */
- private double [] m_MinArray;
- /** The maximum values for numeric attributes. */
- private double [] m_MaxArray;
- /** Constant */
- private static double CO = Math.sqrt(2 * Math.PI);
- /**
- * Returns value for normal kernel
- *
- * @param x the argument to the kernel function
- * @return the value for a normal kernel
- */
- private double normalKernel(double x) {
- return Math.exp(-(x * x) / 2) / CO;
- }
- /**
- * Generates the classifier.
- *
- * @param instances set of instances serving as training data
- * @exception Exception if the classifier has not been generated successfully
- */
- public void buildClassifier(Instances instances) throws Exception {
- if (!instances.classAttribute().isNominal()) {
- throw new Exception("Class attribute has to be nominal!");
- }
- if (instances.checkForStringAttributes()) {
- throw new Exception("Can't handle string attributes!");
- }
- m_Instances = instances;
- m_MinArray = new double [m_Instances.numAttributes()];
- m_MaxArray = new double [m_Instances.numAttributes()];
- for (int i = 0; i < m_Instances.numAttributes(); i++) {
- m_MinArray[i] = m_MaxArray[i] = Double.NaN;
- }
- m_Counts = new double[m_Instances.numClasses()];
- for (int i = 0; i < m_Instances.numInstances(); i++) {
- Instance inst = m_Instances.instance(i);
- if (!inst.classIsMissing()) {
- m_Counts[(int) inst.classValue()] += inst.weight();
- }
- updateMinMax(inst);
- }
- }
- /**
- * Calculates the class membership probabilities for the given test instance.
- *
- * @param instance the instance to be classified
- * @return predicted class probability distribution
- * @exception Exception if the probabilities can't be computed
- */
- public double[] distributionForInstance(Instance instance) throws Exception {
- double[] probs = new double[m_Instances.numClasses()];
- double prob, sum, temp;
- double lowerBound = Math.pow(Double.MIN_VALUE, 1.0 /
- (instance.numAttributes() - 1.0));
- sum = Math.sqrt(Utils.sum(m_Counts));
- updateMinMax(instance);
- for (int i = 0; i < m_Instances.numInstances(); i++) {
- Instance inst = m_Instances.instance(i);
- if (!inst.classIsMissing()) {
- prob = 1;
- for (int j = 0; j < m_Instances.numAttributes(); j++) {
- if (j != m_Instances.classIndex()) {
- temp = normalKernel(distance(instance, inst, j) * sum) * sum;
- if (temp < lowerBound) {
- prob *= lowerBound;
- } else {
- prob *= temp;
- }
- }
- }
- probs[(int) inst.classValue()] += prob;
- }
- }
- Utils.normalize(probs);
- return probs;
- }
- /**
- * Returns a description of the classifier.
- *
- * @return a description of the classifier as a string.
- */
- public String toString() {
- return "Kernel Density Estimator";
- }
- /**
- * Calculates the distance between two instances according to one attribute
- *
- * @param test the first instance
- * @param train the second instance
- * @return the distance between the two given instances
- */
- private double distance(Instance first, Instance second, int i) {
- double diff, distance = 0;
- if (m_Instances.attribute(i).isNominal()) {
- // If attribute is nominal
- if (first.isMissing(i) || second.isMissing(i) ||
- ((int)first.value(i) != (int)second.value(i))) {
- distance += 1;
- }
- } else {
- // If attribute is numeric
- if (first.isMissing(i) || second.isMissing(i)) {
- if (first.isMissing(i) && second.isMissing(i)) {
- diff = 1;
- } else {
- if (second.isMissing(i)) {
- diff = norm(first.value(i), i);
- } else {
- diff = norm(second.value(i), i);
- }
- if (diff < 0.5) {
- diff = 1.0 - diff;
- }
- }
- } else {
- diff = norm(first.value(i), i) - norm(second.value(i), i);
- }
- distance += diff;
- }
- return distance;
- }
- /**
- * Normalizes a given value of a numeric attribute.
- *
- * @param x the value to be normalized
- * @param i the attribute's index
- */
- private double norm(double x, int i) {
- if (Double.isNaN(m_MinArray[i]) || Utils.eq(m_MaxArray[i],m_MinArray[i])) {
- return 0;
- } else {
- return (x - m_MinArray[i]) / (m_MaxArray[i] - m_MinArray[i]);
- }
- }
- /**
- * Updates the minimum and maximum values for all the attributes
- * based on a new instance.
- *
- * @param instance the new instance
- */
- private void updateMinMax(Instance instance) {
- for (int j = 0; j < m_Instances.numAttributes(); j++) {
- if ((m_Instances.attribute(j).isNumeric())
- && (!instance.isMissing(j))) {
- if (Double.isNaN(m_MinArray[j])) {
- m_MinArray[j] = instance.value(j);
- m_MaxArray[j] = instance.value(j);
- } else {
- if (instance.value(j) < m_MinArray[j]) {
- m_MinArray[j] = instance.value(j);
- } else {
- if (instance.value(j) > m_MaxArray[j]) {
- m_MaxArray[j] = instance.value(j);
- }
- }
- }
- }
- }
- }
- /**
- * Main method for testing this class.
- *
- * @param argv the options
- */
- public static void main(String [] argv) {
- try {
- System.out.println(Evaluation.evaluateModel(new KernelDensity(), argv));
- } catch (Exception e) {
- System.err.println(e.getMessage());
- }
- }
- }