Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
NormalizationFilter.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 7k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * NormalizationFilter.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.filters;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- /**
- * Normalizes all numeric values in the given dataset. The resulting
- * values are in [0,1] for the data used to compute the normalization
- * intervals.
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.10 $
- */
- public class NormalizationFilter extends Filter {
- /** The minimum values for numeric attributes. */
- private double [] m_MinArray;
- /** The maximum values for numeric attributes. */
- private double [] m_MaxArray;
- /**
- * Sets the format of the input instances.
- *
- * @param instanceInfo an Instances object containing the input
- * instance structure (any instances contained in the object are
- * ignored - only the structure is required).
- * @return true if the outputFormat may be collected immediately
- * @exception Exception if the input format can't be set
- * successfully
- */
- public boolean setInputFormat(Instances instanceInfo)
- throws Exception {
- super.setInputFormat(instanceInfo);
- setOutputFormat(instanceInfo);
- m_MinArray = m_MaxArray = null;
- return true;
- }
- /**
- * Input an instance for filtering. Filter requires all
- * training instances be read before producing output.
- *
- * @param instance the input instance
- * @return true if the filtered instance may now be
- * collected with output().
- * @exception IllegalStateException if no input format has been set.
- */
- public boolean input(Instance instance) {
- if (getInputFormat() == null) {
- throw new IllegalStateException("No input instance format defined");
- }
- if (m_NewBatch) {
- resetQueue();
- m_NewBatch = false;
- }
- if (m_MinArray == null) {
- bufferInput(instance);
- return false;
- } else {
- convertInstance(instance);
- return true;
- }
- }
- /**
- * Signify that this batch of input to the filter is finished.
- * If the filter requires all instances prior to filtering,
- * output() may now be called to retrieve the filtered instances.
- *
- * @return true if there are instances pending output
- * @exception IllegalStateException if no input structure has been defined
- */
- public boolean batchFinished() {
- if (getInputFormat() == null) {
- throw new IllegalStateException("No input instance format defined");
- }
- if (m_MinArray == null) {
- Instances input = getInputFormat();
- // Compute minimums and maximums
- m_MinArray = new double[input.numAttributes()];
- m_MaxArray = new double[input.numAttributes()];
- for (int i = 0; i < input.numAttributes(); i++) {
- m_MinArray[i] = Double.NaN;
- }
- for (int j = 0; j < input.numInstances(); j++) {
- double[] value = input.instance(j).toDoubleArray();
- for (int i = 0; i < input.numAttributes(); i++) {
- if (input.attribute(i).isNumeric()) {
- if (!Instance.isMissingValue(value[i])) {
- if (Double.isNaN(m_MinArray[i])) {
- m_MinArray[i] = m_MaxArray[i] = value[i];
- } else {
- if (value[i] < m_MinArray[i]) {
- m_MinArray[i] = value[i];
- }
- if (value[i] > m_MaxArray[i]) {
- m_MaxArray[i] = value[i];
- }
- }
- }
- }
- }
- }
- // Convert pending input instances
- for(int i = 0; i < input.numInstances(); i++) {
- convertInstance(input.instance(i));
- }
- }
- // Free memory
- flushInput();
- m_NewBatch = true;
- return (numPendingOutput() != 0);
- }
- /**
- * Convert a single instance over. The converted instance is
- * added to the end of the output queue.
- *
- * @param instance the instance to convert
- */
- private void convertInstance(Instance instance) {
- Instance inst = null;
- if (instance instanceof SparseInstance) {
- double[] newVals = new double[instance.numAttributes()];
- int[] newIndices = new int[instance.numAttributes()];
- double[] vals = instance.toDoubleArray();
- int ind = 0;
- for (int j = 0; j < instance.numAttributes(); j++) {
- double value;
- if (instance.attribute(j).isNumeric() &&
- (!Instance.isMissingValue(vals[j]))) {
- if (Double.isNaN(m_MinArray[j]) ||
- (m_MaxArray[j] == m_MinArray[j])) {
- value = 0;
- } else {
- value = (vals[j] - m_MinArray[j]) /
- (m_MaxArray[j] - m_MinArray[j]);
- }
- if (value != 0.0) {
- newVals[ind] = value;
- newIndices[ind] = j;
- ind++;
- }
- } else {
- value = vals[j];
- if (value != 0.0) {
- newVals[ind] = value;
- newIndices[ind] = j;
- ind++;
- }
- }
- }
- double[] tempVals = new double[ind];
- int[] tempInd = new int[ind];
- System.arraycopy(newVals, 0, tempVals, 0, ind);
- System.arraycopy(newIndices, 0, tempInd, 0, ind);
- inst = new SparseInstance(instance.weight(), tempVals, tempInd,
- instance.numAttributes());
- } else {
- double[] vals = instance.toDoubleArray();
- for (int j = 0; j < getInputFormat().numAttributes(); j++) {
- if (instance.attribute(j).isNumeric() &&
- (!Instance.isMissingValue(vals[j]))) {
- if (Double.isNaN(m_MinArray[j]) ||
- (m_MaxArray[j] == m_MinArray[j])) {
- vals[j] = 0;
- } else {
- vals[j] = (vals[j] - m_MinArray[j]) /
- (m_MaxArray[j] - m_MinArray[j]);
- }
- }
- }
- inst = new Instance(instance.weight(), vals);
- }
- inst.setDataset(instance.dataset());
- push(inst);
- }
- /**
- * Main method for testing this class.
- *
- * @param argv should contain arguments to the filter:
- * use -h for help
- */
- public static void main(String [] argv) {
- try {
- if (Utils.getFlag('b', argv)) {
- Filter.batchFilterFile(new NormalizationFilter(), argv);
- } else {
- Filter.filterFile(new NormalizationFilter(), argv);
- }
- } catch (Exception ex) {
- System.out.println(ex.getMessage());
- }
- }
- }