Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
ItemSet.java
Package: Weka-3-2.rar [view]
Upload User: rhdiban
Upload Date: 2013-08-09
Package Size: 15085k
Code Size: 22k
Category:
Windows Develop
Development Platform:
Java
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- /*
- * ItemSet.java
- * Copyright (C) 1999 Eibe Frank
- *
- */
- package weka.associations;
- import java.io.*;
- import java.util.*;
- import weka.core.*;
- /**
- * Class for storing a set of items. Item sets are stored in a lexicographic
- * order, which is determined by the header information of the set of instances
- * used for generating the set of items. All methods in this class assume that
- * item sets are stored in lexicographic order.
- *
- * @author Eibe Frank (eibe@cs.waikato.ac.nz)
- * @version $Revision: 1.8 $
- */
- public class ItemSet implements Serializable {
- /** The items stored as an array of of ints. */
- protected int[] m_items;
- /** Counter for how many transactions contain this item set. */
- protected int m_counter;
- /** The total number of transactions */
- protected int m_totalTransactions;
- /**
- * Constructor
- * @param totalTrans the total number of transactions in the data
- */
- public ItemSet(int totalTrans) {
- m_totalTransactions = totalTrans;
- }
- /**
- * Outputs the confidence for a rule.
- *
- * @param premise the premise of the rule
- * @param consequence the consequence of the rule
- * @return the confidence on the training data
- */
- public static double confidenceForRule(ItemSet premise,
- ItemSet consequence) {
- return (double)consequence.m_counter/(double)premise.m_counter;
- }
- /**
- * Outputs the lift for a rule. Lift is defined as:<br>
- * confidence / prob(consequence)
- *
- * @param premise the premise of the rule
- * @param consequence the consequence of the rule
- * @param consequenceCount how many times the consequence occurs independent
- * of the premise
- * @return the lift on the training data
- */
- public double liftForRule(ItemSet premise,
- ItemSet consequence,
- int consequenceCount) {
- double confidence = confidenceForRule(premise, consequence);
- return confidence / ((double)consequenceCount /
- (double)m_totalTransactions);
- }
- /**
- * Outputs the leverage for a rule. Leverage is defined as: <br>
- * prob(premise & consequence) - (prob(premise) * prob(consequence))
- *
- * @param premise the premise of the rule
- * @param consequence the consequence of the rule
- * @param premiseCount how many times the premise occurs independent
- * of the consequent
- * @param consequenceCount how many times the consequence occurs independent
- * of the premise
- * @return the leverage on the training data
- */
- public double leverageForRule(ItemSet premise,
- ItemSet consequence,
- int premiseCount,
- int consequenceCount) {
- double coverageForItemSet = (double)consequence.m_counter /
- (double)m_totalTransactions;
- double expectedCoverageIfIndependent =
- ((double)premiseCount / (double)m_totalTransactions) *
- ((double)consequenceCount / (double)m_totalTransactions);
- double lev = coverageForItemSet - expectedCoverageIfIndependent;
- return lev;
- }
- /**
- * Outputs the conviction for a rule. Conviction is defined as: <br>
- * prob(premise) * prob(!consequence) / prob(premise & !consequence)
- *
- * @param premise the premise of the rule
- * @param consequence the consequence of the rule
- * @param premiseCount how many times the premise occurs independent
- * of the consequent
- * @param consequenceCount how many times the consequence occurs independent
- * of the premise
- * @return the conviction on the training data
- */
- public double convictionForRule(ItemSet premise,
- ItemSet consequence,
- int premiseCount,
- int consequenceCount) {
- double num =
- (double)premiseCount * (double)(m_totalTransactions - consequenceCount) *
- (double)m_totalTransactions;
- double denom =
- ((premiseCount - consequence.m_counter)+1);
- if (num < 0 || denom < 0) {
- System.err.println("*** "+num+" "+denom);
- System.err.println("premis count: "+premiseCount+" consequence count "+consequenceCount+" total trans "+m_totalTransactions);
- }
- return num / denom;
- }
- /**
- * Checks if an instance contains an item set.
- *
- * @param instance the instance to be tested
- * @return true if the given instance contains this item set
- */
- public final boolean containedBy(Instance instance) {
- for (int i = 0; i < instance.numAttributes(); i++)
- if (m_items[i] > -1) {
- if (instance.isMissing(i))
- return false;
- if (m_items[i] != (int)instance.value(i))
- return false;
- }
- return true;
- }
- /**
- * Deletes all item sets that don't have minimum support.
- *
- * @param itemSets the set of item sets to be pruned
- * @param minSupport the minimum number of transactions to be covered
- * @return the reduced set of item sets
- */
- public static FastVector deleteItemSets(FastVector itemSets,
- int minSupport,
- int maxSupport) {
- FastVector newVector = new FastVector(itemSets.size());
- for (int i = 0; i < itemSets.size(); i++) {
- ItemSet current = (ItemSet)itemSets.elementAt(i);
- if ((current.m_counter >= minSupport)
- && (current.m_counter <= maxSupport))
- newVector.addElement(current);
- }
- return newVector;
- }
- /**
- * Tests if two item sets are equal.
- *
- * @param itemSet another item set
- * @return true if this item set contains the same items as the given one
- */
- public final boolean equals(Object itemSet) {
- if ((itemSet == null) || !(itemSet.getClass().equals(this.getClass()))) {
- return false;
- }
- if (m_items.length != ((ItemSet)itemSet).m_items.length)
- return false;
- for (int i = 0; i < m_items.length; i++)
- if (m_items[i] != ((ItemSet)itemSet).m_items[i])
- return false;
- return true;
- }
- /**
- * Generates all rules for an item set.
- *
- * @param minConfidence the minimum confidence the rules have to have
- * @param hashtables containing all(!) previously generated
- * item sets
- * @param numItemsInSet the size of the item set for which the rules
- * are to be generated
- * @return all the rules with minimum confidence for the given item set
- */
- public final FastVector[] generateRules(double minConfidence,
- FastVector hashtables,
- int numItemsInSet) {
- FastVector premises = new FastVector(),consequences = new FastVector(),
- conf = new FastVector();
- FastVector[] rules = new FastVector[3], moreResults;
- ItemSet premise, consequence;
- Hashtable hashtable = (Hashtable)hashtables.elementAt(numItemsInSet - 2);
- // Generate all rules with one item in the consequence.
- for (int i = 0; i < m_items.length; i++)
- if (m_items[i] != -1) {
- premise = new ItemSet(m_totalTransactions);
- consequence = new ItemSet(m_totalTransactions);
- premise.m_items = new int[m_items.length];
- consequence.m_items = new int[m_items.length];
- consequence.m_counter = m_counter;
- for (int j = 0; j < m_items.length; j++)
- consequence.m_items[j] = -1;
- System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length);
- premise.m_items[i] = -1;
- consequence.m_items[i] = m_items[i];
- premise.m_counter = ((Integer)hashtable.get(premise)).intValue();
- premises.addElement(premise);
- consequences.addElement(consequence);
- conf.addElement(new Double(confidenceForRule(premise, consequence)));
- }
- rules[0] = premises;
- rules[1] = consequences;
- rules[2] = conf;
- pruneRules(rules, minConfidence);
- // Generate all the other rules
- moreResults = moreComplexRules(rules, numItemsInSet, 1, minConfidence,
- hashtables);
- if (moreResults != null)
- for (int i = 0; i < moreResults[0].size(); i++) {
- rules[0].addElement(moreResults[0].elementAt(i));
- rules[1].addElement(moreResults[1].elementAt(i));
- rules[2].addElement(moreResults[2].elementAt(i));
- }
- return rules;
- }
- /**
- * Generates all significant rules for an item set.
- *
- * @param minMetric the minimum metric (confidence, lift, leverage,
- * improvement) the rules have to have
- * @param metricType (confidence=0, lift, leverage, improvement)
- * @param hashtables containing all(!) previously generated
- * item sets
- * @param numItemsInSet the size of the item set for which the rules
- * are to be generated
- * @param the significance level for testing the rules
- * @return all the rules with minimum metric for the given item set
- * @exception Exception if something goes wrong
- */
- public final FastVector[] generateRulesBruteForce(double minMetric,
- int metricType,
- FastVector hashtables,
- int numItemsInSet,
- int numTransactions,
- double significanceLevel)
- throws Exception {
- FastVector premises = new FastVector(),consequences = new FastVector(),
- conf = new FastVector(), lift = new FastVector(), lev = new FastVector(),
- conv = new FastVector();
- FastVector[] rules = new FastVector[6];
- ItemSet premise, consequence;
- Hashtable hashtableForPremise, hashtableForConsequence;
- int numItemsInPremise, help, max, consequenceUnconditionedCounter;
- double[][] contingencyTable = new double[2][2];
- double metric, chiSquared;
- // Generate all possible rules for this item set and test their
- // significance.
- max = (int)Math.pow(2, numItemsInSet);
- for (int j = 1; j < max; j++) {
- numItemsInPremise = 0;
- help = j;
- while (help > 0) {
- if (help % 2 == 1)
- numItemsInPremise++;
- help /= 2;
- }
- if (numItemsInPremise < numItemsInSet) {
- hashtableForPremise =
- (Hashtable)hashtables.elementAt(numItemsInPremise-1);
- hashtableForConsequence =
- (Hashtable)hashtables.elementAt(numItemsInSet-numItemsInPremise-1);
- premise = new ItemSet(m_totalTransactions);
- consequence = new ItemSet(m_totalTransactions);
- premise.m_items = new int[m_items.length];
- consequence.m_items = new int[m_items.length];
- consequence.m_counter = m_counter;
- help = j;
- for (int i = 0; i < m_items.length; i++)
- if (m_items[i] != -1) {
- if (help % 2 == 1) {
- premise.m_items[i] = m_items[i];
- consequence.m_items[i] = -1;
- } else {
- premise.m_items[i] = -1;
- consequence.m_items[i] = m_items[i];
- }
- help /= 2;
- } else {
- premise.m_items[i] = -1;
- consequence.m_items[i] = -1;
- }
- premise.m_counter = ((Integer)hashtableForPremise.get(premise)).intValue();
- consequenceUnconditionedCounter =
- ((Integer)hashtableForConsequence.get(consequence)).intValue();
- if (metricType == 0) {
- contingencyTable[0][0] = (double)(consequence.m_counter);
- contingencyTable[0][1] = (double)(premise.m_counter - consequence.m_counter);
- contingencyTable[1][0] = (double)(consequenceUnconditionedCounter -
- consequence.m_counter);
- contingencyTable[1][1] = (double)(numTransactions - premise.m_counter -
- consequenceUnconditionedCounter +
- consequence.m_counter);
- chiSquared = ContingencyTables.chiSquared(contingencyTable, false);
- metric = confidenceForRule(premise, consequence);
- if ((!(metric < minMetric)) &&
- (!(chiSquared > significanceLevel))) {
- premises.addElement(premise);
- consequences.addElement(consequence);
- conf.addElement(new Double(metric));
- lift.addElement(new Double(liftForRule(premise, consequence,
- consequenceUnconditionedCounter)));
- lev.addElement(new Double(leverageForRule(premise, consequence,
- premise.m_counter,
- consequenceUnconditionedCounter)));
- conv.addElement(new Double(convictionForRule(premise, consequence,
- premise.m_counter,
- consequenceUnconditionedCounter)));
- }
- } else {
- double tempConf = confidenceForRule(premise, consequence);
- double tempLift = liftForRule(premise, consequence,
- consequenceUnconditionedCounter);
- double tempLev = leverageForRule(premise, consequence,
- premise.m_counter,
- consequenceUnconditionedCounter);
- double tempConv = convictionForRule(premise, consequence,
- premise.m_counter,
- consequenceUnconditionedCounter);
- switch(metricType) {
- case 1:
- metric = tempLift;
- break;
- case 2:
- metric = tempLev;
- break;
- case 3:
- metric = tempConv;
- break;
- default:
- throw new Exception("ItemSet: Unknown metric type!");
- }
- if (!(metric < minMetric)) {
- premises.addElement(premise);
- consequences.addElement(consequence);
- conf.addElement(new Double(tempConf));
- lift.addElement(new Double(tempLift));
- lev.addElement(new Double(tempLev));
- conv.addElement(new Double(tempConv));
- }
- }
- }
- }
- rules[0] = premises;
- rules[1] = consequences;
- rules[2] = conf;
- rules[3] = lift;
- rules[4] = lev;
- rules[5] = conv;
- return rules;
- }
- /**
- * Return a hashtable filled with the given item sets.
- *
- * @param itemSets the set of item sets to be used for filling the hash table
- * @param initialSize the initial size of the hashtable
- * @return the generated hashtable
- */
- public static Hashtable getHashtable(FastVector itemSets, int initialSize) {
- Hashtable hashtable = new Hashtable(initialSize);
- for (int i = 0; i < itemSets.size(); i++) {
- ItemSet current = (ItemSet)itemSets.elementAt(i);
- hashtable.put(current, new Integer(current.m_counter));
- }
- return hashtable;
- }
- /**
- * Produces a hash code for a item set.
- *
- * @return a hash code for a set of items
- */
- public final int hashCode() {
- long result = 0;
- for (int i = m_items.length-1; i >= 0; i--)
- result += (i * m_items[i]);
- return (int)result;
- }
- /**
- * Merges all item sets in the set of (k-1)-item sets
- * to create the (k)-item sets and updates the counters.
- *
- * @param itemSets the set of (k-1)-item sets
- * @param size the value of (k-1)
- * @return the generated (k)-item sets
- */
- public static FastVector mergeAllItemSets(FastVector itemSets, int size,
- int totalTrans) {
- FastVector newVector = new FastVector();
- ItemSet result;
- int numFound, k;
- for (int i = 0; i < itemSets.size(); i++) {
- ItemSet first = (ItemSet)itemSets.elementAt(i);
- out:
- for (int j = i+1; j < itemSets.size(); j++) {
- ItemSet second = (ItemSet)itemSets.elementAt(j);
- result = new ItemSet(totalTrans);
- result.m_items = new int[first.m_items.length];
- // Find and copy common prefix of size 'size'
- numFound = 0;
- k = 0;
- while (numFound < size) {
- if (first.m_items[k] == second.m_items[k]) {
- if (first.m_items[k] != -1)
- numFound++;
- result.m_items[k] = first.m_items[k];
- } else
- break out;
- k++;
- }
- // Check difference
- while (k < first.m_items.length) {
- if ((first.m_items[k] != -1) && (second.m_items[k] != -1))
- break;
- else {
- if (first.m_items[k] != -1)
- result.m_items[k] = first.m_items[k];
- else
- result.m_items[k] = second.m_items[k];
- }
- k++;
- }
- if (k == first.m_items.length) {
- result.m_counter = 0;
- newVector.addElement(result);
- }
- }
- }
- return newVector;
- }
- /**
- * Prunes a set of (k)-item sets using the given (k-1)-item sets.
- *
- * @param toPrune the set of (k)-item sets to be pruned
- * @param kMinusOne the (k-1)-item sets to be used for pruning
- * @return the pruned set of item sets
- */
- public static FastVector pruneItemSets(FastVector toPrune, Hashtable kMinusOne) {
- FastVector newVector = new FastVector(toPrune.size());
- int help, j;
- for (int i = 0; i < toPrune.size(); i++) {
- ItemSet current = (ItemSet)toPrune.elementAt(i);
- for (j = 0; j < current.m_items.length; j++)
- if (current.m_items[j] != -1) {
- help = current.m_items[j];
- current.m_items[j] = -1;
- if (kMinusOne.get(current) == null) {
- current.m_items[j] = help;
- break;
- } else
- current.m_items[j] = help;
- }
- if (j == current.m_items.length)
- newVector.addElement(current);
- }
- return newVector;
- }
- /**
- * Prunes a set of rules.
- *
- * @param rules a two-dimensional array of lists of item sets. The first list
- * of item sets contains the premises, the second one the consequences.
- * @param minConfidence the minimum confidence the rules have to have
- */
- public static void pruneRules(FastVector[] rules, double minConfidence) {
- FastVector newPremises = new FastVector(rules[0].size()),
- newConsequences = new FastVector(rules[1].size()),
- newConf = new FastVector(rules[2].size());
- for (int i = 0; i < rules[0].size(); i++)
- if (!(((Double)rules[2].elementAt(i)).doubleValue() <
- minConfidence)) {
- newPremises.addElement(rules[0].elementAt(i));
- newConsequences.addElement(rules[1].elementAt(i));
- newConf.addElement(rules[2].elementAt(i));
- }
- rules[0] = newPremises;
- rules[1] = newConsequences;
- rules[2] = newConf;
- }
- /**
- * Converts the header info of the given set of instances into a set
- * of item sets (singletons). The ordering of values in the header file
- * determines the lexicographic order.
- *
- * @param instances the set of instances whose header info is to be used
- * @return a set of item sets, each containing a single item
- * @exception Exception if singletons can't be generated successfully
- */
- public static FastVector singletons(Instances instances) throws Exception {
- FastVector setOfItemSets = new FastVector();
- ItemSet current;
- for (int i = 0; i < instances.numAttributes(); i++) {
- if (instances.attribute(i).isNumeric())
- throw new Exception("Can't handle numeric attributes!");
- for (int j = 0; j < instances.attribute(i).numValues(); j++) {
- current = new ItemSet(instances.numInstances());
- current.m_items = new int[instances.numAttributes()];
- for (int k = 0; k < instances.numAttributes(); k++)
- current.m_items[k] = -1;
- current.m_items[i] = j;
- setOfItemSets.addElement(current);
- }
- }
- return setOfItemSets;
- }
- /**
- * Subtracts an item set from another one.
- *
- * @param toSubtract the item set to be subtracted from this one.
- * @return an item set that only contains items form this item sets that
- * are not contained by toSubtract
- */
- public final ItemSet subtract(ItemSet toSubtract) {
- ItemSet result = new ItemSet(m_totalTransactions);
- result.m_items = new int[m_items.length];
- for (int i = 0; i < m_items.length; i++)
- if (toSubtract.m_items[i] == -1)
- result.m_items[i] = m_items[i];
- else
- result.m_items[i] = -1;
- result.m_counter = 0;
- return result;
- }
- /**
- * Outputs the support for an item set.
- *
- * @return the support
- */
- public final int support() {
- return m_counter;
- }
- /**
- * Returns the contents of an item set as a string.
- *
- * @param instances contains the relevant header information
- * @return string describing the item set
- */
- public final String toString(Instances instances) {
- StringBuffer text = new StringBuffer();
- for (int i = 0; i < instances.numAttributes(); i++)
- if (m_items[i] != -1) {
- text.append(instances.attribute(i).name()+'=');
- text.append(instances.attribute(i).value(m_items[i])+' ');
- }
- text.append(m_counter);
- return text.toString();
- }
- /**
- * Updates counter of item set with respect to given transaction.
- *
- * @param instance the instance to be used for ubdating the counter
- */
- public final void upDateCounter(Instance instance) {
- if (containedBy(instance))
- m_counter++;
- }
- /**
- * Updates counters for a set of item sets and a set of instances.
- *
- * @param itemSets the set of item sets which are to be updated
- * @param instances the instances to be used for updating the counters
- */
- public static void upDateCounters(FastVector itemSets, Instances instances) {
- for (int i = 0; i < instances.numInstances(); i++) {
- Enumeration enum = itemSets.elements();
- while (enum.hasMoreElements())
- ((ItemSet)enum.nextElement()).upDateCounter(instances.instance(i));
- }
- }
- /**
- * Generates rules with more than one item in the consequence.
- *
- * @param rules all the rules having (k-1)-item sets as consequences
- * @param numItemsInSet the size of the item set for which the rules
- * are to be generated
- * @param numItemsInConsequence the value of (k-1)
- * @param minConfidence the minimum confidence a rule has to have
- * @param hashtables the hashtables containing all(!) previously generated
- * item sets
- * @return all the rules having (k)-item sets as consequences
- */
- private final FastVector[] moreComplexRules(FastVector[] rules,
- int numItemsInSet,
- int numItemsInConsequence,
- double minConfidence,
- FastVector hashtables) {
- ItemSet newPremise;
- FastVector[] result, moreResults;
- FastVector newConsequences, newPremises = new FastVector(),
- newConf = new FastVector();
- Hashtable hashtable;
- if (numItemsInSet > numItemsInConsequence + 1) {
- hashtable =
- (Hashtable)hashtables.elementAt(numItemsInSet - numItemsInConsequence - 2);
- newConsequences = mergeAllItemSets(rules[1],
- numItemsInConsequence - 1,
- m_totalTransactions);
- Enumeration enum = newConsequences.elements();
- while (enum.hasMoreElements()) {
- ItemSet current = (ItemSet)enum.nextElement();
- current.m_counter = m_counter;
- newPremise = subtract(current);
- newPremise.m_counter = ((Integer)hashtable.get(newPremise)).intValue();
- newPremises.addElement(newPremise);
- newConf.addElement(new Double(confidenceForRule(newPremise, current)));
- }
- result = new FastVector[3];
- result[0] = newPremises;
- result[1] = newConsequences;
- result[2] = newConf;
- pruneRules(result, minConfidence);
- moreResults = moreComplexRules(result,numItemsInSet,numItemsInConsequence+1,
- minConfidence, hashtables);
- if (moreResults != null)
- for (int i = 0; i < moreResults[0].size(); i++) {
- result[0].addElement(moreResults[0].elementAt(i));
- result[1].addElement(moreResults[1].elementAt(i));
- result[2].addElement(moreResults[2].elementAt(i));
- }
- return result;
- } else
- return null;
- }
- }