Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
cushing_svm.m
Package: SVM--SVM.rar [view]
Upload User: liu_jing
Upload Date: 2013-07-02
Package Size: 4k
Code Size: 1k
Category:
Mathimatics-Numerical algorithms
Development Platform:
Matlab
- %============================
- %使用SVM实现三类模式识别
- %============================
- clear;
- clc;
- load train.data;
- train_data=train(:,1:2);% 全部训练样本集合
- expected_output=[-1;-1;-1;-1;-1;-1;1;1;1;1;1;1;1;1;1;1;-1;-1;-1;-1;-1]; % 先分成ac和b两类时的全部期望输出
- train_data_partly=[];
- temp1=train_data(1:6,:);
- temp2=train_data(17:21,:);
- train_data_partly=[temp1;temp2];% 部分训练样本集合,a类和c类样本集合
- expected_output_partly=[-1;-1;-1;-1;-1;-1;1;1;1;1;1];% 部分期望输出,a类和c类样本的期望输出集合
- ker='rbf';
- C=100.0;
- X=train_data;
- Y=expected_output;
- [nsv alpha bias]=svc(X,Y,ker,C);
- alpha1=alpha;
- X=train_data_partly;
- Y=expected_output_partly;
- [nsv alpha bias]=svc(X,Y,ker,C);
- alpha2=alpha;
- load test.data
- test_data=test;% 测试样本集
- clc;
- % 测试识别输出
- fprintf('测试样本的识别结果为: n');
- for i=1:6
- X=train_data;
- Y=expected_output;
- Z=test_data(i,:);
- predictedY = svcoutput(X,Y,Z,ker,alpha1,bias,0);
- if (predictedY==1)
- fprintf(' b n');
- else
- X=train_data_partly;
- Y=expected_output_partly;
- predictedY = svcoutput(X,Y,Z,ker,alpha2,bias,0);
- if (predictedY==1)
- fprintf( ' c n');
- else
- fprintf(' a n');
- end
- end
- end