Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
class.c
Package: gsnake.rar [view]
Upload User: shhuayu888
Upload Date: 2013-03-28
Package Size: 1788k
Code Size: 7k
Category:
Windows Develop
Development Platform:
Unix_Linux
- /****************************************************************************
- File Name : class.c
- Purpose : provides algorithm for contour detection and classification
- Release : Version 1.0
- Date : Aug 31,1995
- GSNAKE API is jointly developed by the Information Technology Institute (ITI), Singapore, and the School of Applied Science, Nanyang Technological
- University (NTU), Singapore.
- These software programs are available to the user without any license or royalty fees. Permission is hereby granted to use, copy, modify, and distribute this software and its documentation for any purpose. ITI and NTU gives no warranty, express, implied, or statuary for the software and/or documentation provided, including, without limitation, waranty of merchantibility and warranty of fitness for a particular purpose. The software provided hereunder is on an "as is" basis, and ITI and NTU has no obligation to provide maintenance, support, updates, enhancements, or modifications.
- GSNAKE API is available for any UNIX compatible system. User feedback, bugs, or software and manual suggestions should be sent via electronic mail to one of the following, who may or may not act on them as he/she desires :
- asschan@ntu.ac.sg
- kflai@iti.gov.sg
- ***************************************************************************/
- #include "gsnake.h"
- CLASSIFY::CLASSIFY(EEXTTYPE _Eexttype)
- {
- Eexttype = _Eexttype ;
- numClass = 0 ;
- templates = NULL ;
- labels = NULL ;
- Deform_Prob = Margin_Prob = Rigid_Match = Deform_Match = NULL ;
- Qx = 3, Qy = 3, NR = Nrxy = Nt = Ndx = Ndy = 1 ;
- QR = 0.25, Qrxy = 0.25, Qt = RADIAN(10), Qdx = 0.1, Qdy = 0.1 ;
- R = 1 ; THETA = 0 ;
- numSearchSegment = 5 ;
- segmentSpacing = 5 ;
- numLevel = 1 ;
- verbose = 0 ;
- nhoodTangent = 3, nhoodNormal = 3 ;
- }
- CLASSIFY::~CLASSIFY( void )
- {
- register short i;
- for( i = 0; i< numClass; i++ ) {
- if ( templates[i] ) delete templates[i];
- if ( labels[i] ) _iMemFree(labels[i]) ;
- }
- _iMemFree( Margin_Prob ) ;
- _iMemFree( Deform_Prob );
- _iMemFree( Rigid_Match );
- _iMemFree( Deform_Match);
- _iMemFree( templates );
- _iMemFree( labels ) ;
- }
- /*
- * memory allocation
- */
- int CLASSIFY::init( void )
- {
- templates = (CONTOUR **)_iMemRealloc( templates,
- (numClass+1)*sizeof(CONTOUR *) );
- labels = (char **)_iMemRealloc( labels,
- (numClass+1)*sizeof(char *) );
- Margin_Prob = (double *)_iMemRealloc( Margin_Prob,
- (numClass+1)*sizeof(double));
- Deform_Prob = (double *)_iMemRealloc( Deform_Prob,
- (numClass+1)*sizeof(double));
- Rigid_Match = (double *)_iMemRealloc( Rigid_Match,
- (numClass+1)*sizeof(double) );
- Deform_Match = (double *)_iMemRealloc( Deform_Match,
- (numClass+1)*sizeof(double) );
- if ( !templates || !labels || !Margin_Prob || !Deform_Prob ||
- !Rigid_Match || !Deform_Match )
- return MEMORYERROR;
- templates[numClass] = NULL ; labels[numClass] = NULL ;
- Margin_Prob[numClass] = Deform_Prob[numClass] =
- Rigid_Match[numClass] = Deform_Match[numClass] = 0 ;
- return NOERROR;
- }
- /*
- * read a template from structure
- */
- int CLASSIFY::read( CONTOUR *contour )
- {
- if ( init() == MEMORYERROR ) {
- fprintf(stderr, "<CLASSIFY::init> : memory allocation errorn");
- return MEMORYERROR;
- }
- templates[numClass] = contour->duplicate();
- /* increase contour # */
- numClass++;
- return NOERROR;
- }
- /*
- * read a template from file
- */
- int CLASSIFY::read( char *filename )
- {
- if ( ( init() == MEMORYERROR ) ||
- !( templates[numClass] = new CONTOUR ) ) {
- fprintf(stderr, "<CLASSIFY::init> : memory allocation errorn");
- return MEMORYERROR;
- }
- templates[numClass]->CONTOUR::read( filename );
- labels[numClass] = strtok(strdup(filename), ".") ;
- /* increase contour # */
- numClass++;
- return NOERROR;
- }
- /*
- * perform classification
- */
- int CLASSIFY::classify(IMAGE *testimg, CLASSTYPE ClassType)
- {
- GSNAKE gsnake(Eexttype, _LOCAL_LAMBDA) ;
- register short i ;
- double avg_sig_nu_sqr = 0 ;
- for(i=0; i<numClass; i++) /* compute average sigma nu */
- avg_sig_nu_sqr += templates[i]->getSigNuSqr() ;
- avg_sig_nu_sqr /= numClass ;
- gsnake.putRawImg(testimg) ;
- gsnake.genPyramid(numLevel, verbose) ;
- for(i=0; i<numClass; i++) {
- templates[i]->duplicate(&gsnake) ;
- gsnake.putSigNuSqr(avg_sig_nu_sqr) ;
- gsnake.localize(Qx, Qy, NR, QR, Nrxy, Qrxy, Nt, Qt, Ndx, Qdx,
- Ndy, Qdy, R, THETA) ;
- gsnake.ESnake(0) ;
- Rigid_Match[i] = -gsnake.getEext() ;
- gsnake.minimize(segmentSpacing, numSearchSegment, 0, 1, verbose) ;
- gsnake.ESnake(0) ;
- Deform_Match[i] = -gsnake.getEext() ;
- Deform_Prob[i] =
- exp( (1 - gsnake.getEsnake()) * gsnake.getNumSnaxel() /
- avg_sig_nu_sqr ) / gsnake.getZ() ;
- Margin_Prob[i] = gsnake.marginalize(nhoodTangent, nhoodNormal) ;
- }
- return selectMax(ClassType) ;
- }
- /*
- * find the maximum value for type
- */
- int CLASSIFY::selectMax( CLASSTYPE ClassType )
- {
- short register i, max_index;
- double max_score = -1000;
- double *score;
- switch( ClassType ) {
- case _MARGIN_PROB :
- score = Margin_Prob ;
- break ;
- case _DEFORM_PROB :
- score = Deform_Prob;
- break;
- case _RIGID_MATCH :
- score = Rigid_Match;
- break;
- case _DEFORM_MATCH :
- score = Deform_Match;
- }
- /* find maximum score */
- for ( i = 0; i < numClass; i++ ) {
- if ( score[i] > max_score ) {
- max_index = i;
- max_score = score[i];
- }
- }
- return max_index;
- }
- /*
- * get the desire template score
- */
- double CLASSIFY::getScore( int template_id, /* template identifier */
- CLASSTYPE ClassType ) /* classmethod */
- {
- double score;
- switch( ClassType ) {
- case _MARGIN_PROB :
- score = Margin_Prob[template_id];
- break;
- case _DEFORM_PROB :
- score = Deform_Prob[template_id];
- break;
- case _RIGID_MATCH :
- score = Rigid_Match[template_id];
- break;
- case _DEFORM_MATCH :
- score = Deform_Match[template_id];
- break;
- }
- return score;
- }
- char *CLASSIFY::getLabel(short class_id)
- {
- if(labels && labels[class_id]) return labels[class_id] ;
- }
- void CLASSIFY::dump(char *imgname, FILE *stream)
- {
- register int i ;
- fprintf(stream, "nClassification Results for Image <%s> :n", imgname);
- fprintf(stream, "Rigid Match : nt");
- for(i=0; i<numClass; i++)
- fprintf(stream, "%s : %et", getLabel(i), getScore(i, _RIGID_MATCH));
- fprintf(stream, "ntResults : %sn",
- getLabel(selectMax(_RIGID_MATCH)));
- fprintf(stream, "Deform Match : nt");
- for(i=0; i<numClass; i++)
- fprintf(stream, "%s : %et", getLabel(i), getScore(i, _DEFORM_MATCH));
- fprintf(stream, "ntResults : %sn",
- getLabel(selectMax(_DEFORM_MATCH)));
- fprintf(stream, "Deform Prob : nt");
- for(i=0; i<numClass; i++)
- fprintf(stream, "%s : %et", getLabel(i), getScore(i, _DEFORM_PROB));
- fprintf(stream, "ntResults : %sn",
- getLabel(selectMax(_DEFORM_PROB)));
- fprintf(stream, "Marginalized : nt");
- for(i=0; i<numClass; i++)
- fprintf(stream, "%s : %et", getLabel(i), getScore(i, _MARGIN_PROB));
- fprintf(stream, "ntResults : %sn",
- getLabel(selectMax(_MARGIN_PROB)));
- fprintf(stream, "n");
- }