Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
fft.py
Package: 4.tar.gz [view]
Upload User: ozl2332
Upload Date: 2009-12-28
Package Size: 38k
Code Size: 5k
Category:
Voice Compress
Development Platform:
C/C++
- #!/usr/bin/env python2.3
- import math
- import sys
- import random
- pi=math.pi
- e=math.e
- j=complex(0,1)
- def fft(f,inv):
- n=len(f)
- if n==1:
- return f
- for p in 2,3,5:
- if n%p==0:
- break
- else:
- raise Exception('%s not factorable ' % n)
- m = n/p
- Fout=[]
- for q in range(p): # 0,1
- fp = f[q::p]
- Fp = fft( fp ,inv)
- Fout.extend( Fp )
- for u in range(m):
- scratch = Fout[u::m] # u to end in strides of m
- for q1 in range(p):
- k = q1*m + u # indices to Fout above that became scratch
- Fout[ k ] = scratch[0] # cuz e**0==1 in loop below
- for q in range(1,p):
- if inv:
- t = e ** ( j*2*pi*k*q/n )
- else:
- t = e ** ( -j*2*pi*k*q/n )
- Fout[ k ] += scratch[q] * t
- return Fout
- def rifft(F):
- N = len(F) - 1
- Z = [0] * (N)
- for k in range(N):
- Fek = ( F[k] + F[-k-1].conjugate() )
- Fok = ( F[k] - F[-k-1].conjugate() ) * e ** (j*pi*k/N)
- Z[k] = Fek + j*Fok
- fp = fft(Z , 1)
- f = []
- for c in fp:
- f.append(c.real)
- f.append(c.imag)
- return f
- def real_fft( f,inv ):
- if inv:
- return rifft(f)
- N = len(f) / 2
- res = f[::2]
- ims = f[1::2]
- fp = [ complex(r,i) for r,i in zip(res,ims) ]
- print 'fft input ', fp
- Fp = fft( fp ,0 )
- print 'fft output ', Fp
- F = [ complex(0,0) ] * ( N+1 )
- F[0] = complex( Fp[0].real + Fp[0].imag , 0 )
- for k in range(1,N/2+1):
- tw = e ** ( -j*pi*(.5+float(k)/N ) )
- F1k = Fp[k] + Fp[N-k].conjugate()
- F2k = Fp[k] - Fp[N-k].conjugate()
- F2k *= tw
- F[k] = ( F1k + F2k ) * .5
- F[N-k] = ( F1k - F2k ).conjugate() * .5
- #F[N-k] = ( F1kp + e ** ( -j*pi*(.5+float(N-k)/N ) ) * F2kp ) * .5
- #F[N-k] = ( F1k.conjugate() - tw.conjugate() * F2k.conjugate() ) * .5
- F[N] = complex( Fp[0].real - Fp[0].imag , 0 )
- return F
- def main():
- #fft_func = fft
- fft_func = real_fft
- tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665]
- Ftvec = [ complex(r,i) for r,i in zip(
- [3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761],
- [0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ]
- F = fft_func( tvec,0 )
- nerrs= 0
- for i in range(len(Ftvec)/2 + 1):
- if abs( F[i] - Ftvec[i] )> 1e-5:
- print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i])
- nerrs += 1
- print '%d errors in forward fft' % nerrs
- if nerrs:
- return
- trec = fft_func( F , 1 )
- for i in range(len(trec) ):
- trec[i] /= len(trec)
- for i in range(len(tvec) ):
- if abs( trec[i] - tvec[i] )> 1e-5:
- print 't[%d]: %s != %s' % (i,tvec[i],trec[i])
- nerrs += 1
- print '%d errors in reverse fft' % nerrs
- def make_random(dims=[1]):
- import Numeric
- res = []
- for i in range(dims[0]):
- if len(dims)==1:
- r=random.uniform(-1,1)
- i=random.uniform(-1,1)
- res.append( complex(r,i) )
- else:
- res.append( make_random( dims[1:] ) )
- return Numeric.array(res)
- def flatten(x):
- import Numeric
- ntotal = Numeric.product(Numeric.shape(x))
- return Numeric.reshape(x,(ntotal,))
- def randmat( ndims ):
- dims=[]
- for i in range( ndims ):
- curdim = int( random.uniform(2,4) )
- dims.append( curdim )
- return make_random(dims )
- def test_fftnd(ndims=3):
- import FFT
- import Numeric
- x=randmat( ndims )
- print 'dimensions=%s' % str( Numeric.shape(x) )
- #print 'x=%s' %str(x)
- xver = FFT.fftnd(x)
- x2=myfftnd(x)
- err = xver - x2
- errf = flatten(err)
- xverf = flatten(xver)
- errpow = Numeric.vdot(errf,errf)+1e-10
- sigpow = Numeric.vdot(xverf,xverf)+1e-10
- snr = 10*math.log10(abs(sigpow/errpow) )
- if snr<80:
- print xver
- print x2
- print 'SNR=%sdB' % str( snr )
- def myfftnd(x):
- import Numeric
- xf = flatten(x)
- Xf = fftndwork( xf , Numeric.shape(x) )
- return Numeric.reshape(Xf,Numeric.shape(x) )
- def fftndwork(x,dims):
- import Numeric
- dimprod=Numeric.product( dims )
- for k in range( len(dims) ):
- cur_dim=dims[ k ]
- stride=dimprod/cur_dim
- next_x = [complex(0,0)]*len(x)
- for i in range(stride):
- next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0)
- x = next_x
- return x
- if __name__ == "__main__":
- try:
- nd = int(sys.argv[1])
- except:
- nd=None
- if nd:
- test_fftnd( nd )
- else:
- sys.exit(0)