Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
il_neuquant.c
Package: devil-1.7.99.tar.gz [view]
Upload User: wmy0603
Upload Date: 2022-05-02
Package Size: 1808k
Code Size: 12k
Category:
Compress-Decompress algrithms
Development Platform:
Visual C++
- /* NeuQuant Neural-Net Quantization Algorithm
- * ------------------------------------------
- *
- * Copyright (c) 1994 Anthony Dekker
- *
- * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
- * See "Kohonen neural networks for optimal colour quantization"
- * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
- * for a discussion of the algorithm.
- * See also http://www.acm.org/~dekker/NEUQUANT.HTML
- *
- * Any party obtaining a copy of these files from the author, directly or
- * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
- * world-wide, paid up, royalty-free, nonexclusive right and license to deal
- * in this software and documentation files (the "Software"), including without
- * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons who receive
- * copies from any such party to do so, with the only requirement being
- * that this copyright notice remain intact.
- */
- //-----------------------------------------------------------------------------
- //
- // ImageLib Sources
- // by Denton Woods
- // Last modified: 01/04/2009
- //
- // Filename: src-IL/src/il_neuquant.c
- //
- // Description: Heavily modified by Denton Woods.
- //
- //-----------------------------------------------------------------------------
- #include "il_internal.h"
- // Function definitions
- void initnet(ILubyte *thepic, ILint len, ILint sample);
- void unbiasnet();
- void inxbuild();
- ILubyte inxsearch(ILint b, ILint g, ILint r);
- void learn();
- // four primes near 500 - assume no image has a length so large
- // that it is divisible by all four primes
- #define prime1 499
- #define prime2 491
- #define prime3 487
- #define prime4 503
- #define minpicturebytes (3*prime4) // minimum size for input image
- // Network Definitions
- // -------------------
- #define netsize 256 // number of colours used
- #define maxnetpos (netsizethink-1)
- #define netbiasshift 4 // bias for colour values
- #define ncycles 100 // no. of learning cycles
- // defs for freq and bias
- #define intbiasshift 16 // bias for fractions
- #define intbias (((ILint) 1)<<intbiasshift)
- #define gammashift 10 // gamma = 1024
- #define gamma (((ILint) 1)<<gammashift)
- #define betashift 10
- #define beta (intbias>>betashift)// beta = 1/1024
- #define betagamma (intbias<<(gammashift-betashift))
- // defs for decreasing radius factor
- #define initrad (netsize>>3) // for 256 cols, radius starts
- #define radiusbiasshift 6 // at 32.0 biased by 6 bits
- #define radiusbias (((ILint) 1)<<radiusbiasshift)
- #define initradius (initrad*radiusbias) // and decreases by a
- #define radiusdec 30 // factor of 1/30 each cycle
- // defs for decreasing alpha factor
- #define alphabiasshift 10 // alpha starts at 1.0
- #define initalpha (((ILint) 1)<<alphabiasshift)
- ILint alphadec; // biased by 10 bits
- // radbias and alpharadbias used for radpower calculation
- #define radbiasshift 8
- #define radbias (((ILint) 1)<<radbiasshift)
- #define alpharadbshift (alphabiasshift+radbiasshift)
- #define alpharadbias (((ILint) 1)<<alpharadbshift)
- // Types and Global Variables
- // --------------------------
- unsigned char *thepicture; // the input image itself
- int lengthcount; // lengthcount = H*W*3
- int samplefac; // sampling factor 1..30
- typedef int pixel[4]; // BGRc
- static pixel network[netsize]; // the network itself
- int netindex[256]; // for network lookup - really 256
- int bias [netsize]; // bias and freq arrays for learning
- int freq [netsize];
- int radpower[initrad]; // radpower for precomputation
- int netsizethink; // number of colors we want to reduce to, 2-256
- // Initialise network in range (0,0,0) to (255,255,255) and set parameters
- // -----------------------------------------------------------------------
- void initnet(ILubyte *thepic, ILint len, ILint sample)
- {
- ILint i;
- ILint *p;
- thepicture = thepic;
- lengthcount = len;
- samplefac = sample;
- for (i=0; i<netsizethink; i++) {
- p = network[i];
- p[0] = p[1] = p[2] = (i << (netbiasshift+8))/netsize;
- freq[i] = intbias/netsizethink; // 1/netsize
- bias[i] = 0;
- }
- return;
- }
- // Unbias network to give byte values 0..255 and record position i to prepare for sort
- // -----------------------------------------------------------------------------------
- void unbiasnet()
- {
- ILint i,j;
- for (i=0; i<netsizethink; i++) {
- for (j=0; j<3; j++)
- network[i][j] >>= netbiasshift;
- network[i][3] = i; // record colour no
- }
- return;
- }
- // Insertion sort of network and building of netindex[0..255] (to do after unbias)
- // -------------------------------------------------------------------------------
- void inxbuild()
- {
- ILint i,j,smallpos,smallval;
- ILint *p,*q;
- ILint previouscol,startpos;
- previouscol = 0;
- startpos = 0;
- for (i=0; i<netsizethink; i++) {
- p = network[i];
- smallpos = i;
- smallval = p[1]; // index on g
- // find smallest in i..netsize-1
- for (j=i+1; j<netsizethink; j++) {
- q = network[j];
- if (q[1] < smallval) { // index on g
- smallpos = j;
- smallval = q[1]; // index on g
- }
- }
- q = network[smallpos];
- // swap p (i) and q (smallpos) entries
- if (i != smallpos) {
- j = q[0]; q[0] = p[0]; p[0] = j;
- j = q[1]; q[1] = p[1]; p[1] = j;
- j = q[2]; q[2] = p[2]; p[2] = j;
- j = q[3]; q[3] = p[3]; p[3] = j;
- }
- // smallval entry is now in position i
- if (smallval != previouscol) {
- netindex[previouscol] = (startpos+i)>>1;
- for (j=previouscol+1; j<smallval; j++) netindex[j] = i;
- previouscol = smallval;
- startpos = i;
- }
- }
- netindex[previouscol] = (startpos+maxnetpos)>>1;
- for (j=previouscol+1; j<256; j++) netindex[j] = maxnetpos; // really 256
- return;
- }
- // Search for BGR values 0..255 (after net is unbiased) and return colour index
- // ----------------------------------------------------------------------------
- ILubyte inxsearch(ILint b, ILint g, ILint r)
- {
- ILint i,j,dist,a,bestd;
- ILint *p;
- ILint best;
- bestd = 1000; // biggest possible dist is 256*3
- best = -1;
- i = netindex[g]; // index on g
- j = i-1; // start at netindex[g] and work outwards
- while ((i<netsizethink) || (j>=0)) {
- if (i<netsizethink) {
- p = network[i];
- dist = p[1] - g; // inx key
- if (dist >= bestd) i = netsizethink; // stop iter
- else {
- i++;
- if (dist<0) dist = -dist;
- a = p[0] - b; if (a<0) a = -a;
- dist += a;
- if (dist<bestd) {
- a = p[2] - r; if (a<0) a = -a;
- dist += a;
- if (dist<bestd) {bestd=dist; best=p[3];}
- }
- }
- }
- if (j>=0) {
- p = network[j];
- dist = g - p[1]; // inx key - reverse dif
- if (dist >= bestd) j = -1; // stop iter
- else {
- j--;
- if (dist<0) dist = -dist;
- a = p[0] - b; if (a<0) a = -a;
- dist += a;
- if (dist<bestd) {
- a = p[2] - r; if (a<0) a = -a;
- dist += a;
- if (dist<bestd) {bestd=dist; best=p[3];}
- }
- }
- }
- }
- return (ILubyte)best;
- }
- // Search for biased BGR values
- // ----------------------------
- ILint contest(ILint b, ILint g, ILint r)
- {
- // finds closest neuron (min dist) and updates freq
- // finds best neuron (min dist-bias) and returns position
- // for frequently chosen neurons, freq[i] is high and bias[i] is negative
- // bias[i] = gamma*((1/netsize)-freq[i])
- ILint i,dist,a,biasdist,betafreq;
- ILint bestpos,bestbiaspos,bestd,bestbiasd;
- ILint *p,*f, *n;
- bestd = ~(((ILint) 1)<<31);
- bestbiasd = bestd;
- bestpos = -1;
- bestbiaspos = bestpos;
- p = bias;
- f = freq;
- for (i=0; i<netsizethink; i++) {
- n = network[i];
- dist = n[0] - b; if (dist<0) dist = -dist;
- a = n[1] - g; if (a<0) a = -a;
- dist += a;
- a = n[2] - r; if (a<0) a = -a;
- dist += a;
- if (dist<bestd) {bestd=dist; bestpos=i;}
- biasdist = dist - ((*p)>>(intbiasshift-netbiasshift));
- if (biasdist<bestbiasd) {bestbiasd=biasdist; bestbiaspos=i;}
- betafreq = (*f >> betashift);
- *f++ -= betafreq;
- *p++ += (betafreq<<gammashift);
- }
- freq[bestpos] += beta;
- bias[bestpos] -= betagamma;
- return(bestbiaspos);
- }
- // Move neuron i towards biased (b,g,r) by factor alpha
- // ----------------------------------------------------
- void altersingle(ILint alpha, ILint i, ILint b, ILint g, ILint r)
- {
- ILint *n;
- n = network[i]; // alter hit neuron
- *n -= (alpha*(*n - b)) / initalpha;
- n++;
- *n -= (alpha*(*n - g)) / initalpha;
- n++;
- *n -= (alpha*(*n - r)) / initalpha;
- return;
- }
- // Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
- // ---------------------------------------------------------------------------------
- void alterneigh(ILint rad, ILint i, ILint b, ILint g, ILint r)
- {
- ILint j,k,lo,hi,a;
- ILint *p, *q;
- lo = i-rad; if (lo<-1) lo=-1;
- hi = i+rad; if (hi>netsizethink) hi=netsizethink;
- j = i+1;
- k = i-1;
- q = radpower;
- while ((j<hi) || (k>lo)) {
- a = (*(++q));
- if (j<hi) {
- p = network[j];
- *p -= (a*(*p - b)) / alpharadbias;
- p++;
- *p -= (a*(*p - g)) / alpharadbias;
- p++;
- *p -= (a*(*p - r)) / alpharadbias;
- j++;
- }
- if (k>lo) {
- p = network[k];
- *p -= (a*(*p - b)) / alpharadbias;
- p++;
- *p -= (a*(*p - g)) / alpharadbias;
- p++;
- *p -= (a*(*p - r)) / alpharadbias;
- k--;
- }
- }
- return;
- }
- // Main Learning Loop
- // ------------------
- void learn()
- {
- ILint i,j,b,g,r;
- ILint radius,rad,alpha,step,delta,samplepixels;
- ILubyte *p;
- ILubyte *lim;
- alphadec = 30 + ((samplefac-1)/3);
- p = thepicture;
- lim = thepicture + lengthcount;
- samplepixels = lengthcount/(3*samplefac);
- delta = samplepixels/ncycles;
- alpha = initalpha;
- radius = initradius;
- rad = radius >> radiusbiasshift;
- if (rad <= 1) rad = 0;
- for (i=0; i<rad; i++)
- radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad));
- // beginning 1D learning: initial radius=rad
- if ((lengthcount%prime1) != 0) step = 3*prime1;
- else {
- if ((lengthcount%prime2) !=0) step = 3*prime2;
- else {
- if ((lengthcount%prime3) !=0) step = 3*prime3;
- else step = 3*prime4;
- }
- }
- i = 0;
- while (i < samplepixels) {
- b = p[0] << netbiasshift;
- g = p[1] << netbiasshift;
- r = p[2] << netbiasshift;
- j = contest(b,g,r);
- altersingle(alpha,j,b,g,r);
- if (rad) alterneigh(rad,j,b,g,r); // alter neighbours
- p += step;
- if (p >= lim) p -= lengthcount;
- i++;
- if (i%delta == 0) {
- alpha -= alpha / alphadec;
- radius -= radius / radiusdec;
- rad = radius >> radiusbiasshift;
- if (rad <= 1) rad = 0;
- for (j=0; j<rad; j++)
- radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad));
- }
- }
- // finished 1D learning: final alpha=alpha/initalpha;
- return;
- }
- ILimage *iNeuQuant(ILimage *Image, ILuint NumCols)
- {
- ILimage *TempImage, *NewImage;
- ILuint sample, i, j;
- netsizethink=NumCols;
- NewImage = iCurImage;
- iCurImage = Image;
- TempImage = iConvertImage(iCurImage, IL_BGR, IL_UNSIGNED_BYTE);
- iCurImage = NewImage;
- sample = ilGetInteger(IL_NEU_QUANT_SAMPLE);
- if (TempImage == NULL)
- return NULL;
- initnet(TempImage->Data, TempImage->SizeOfData, sample);
- learn();
- unbiasnet();
- NewImage = (ILimage*)icalloc(sizeof(ILimage), 1);
- if (NewImage == NULL) {
- ilCloseImage(TempImage);
- return NULL;
- }
- NewImage->Data = (ILubyte*)ialloc(TempImage->SizeOfData / 3);
- if (NewImage->Data == NULL) {
- ilCloseImage(TempImage);
- ifree(NewImage);
- return NULL;
- }
- ilCopyImageAttr(NewImage, Image);
- NewImage->Bpp = 1;
- NewImage->Bps = Image->Width;
- NewImage->SizeOfPlane = NewImage->Bps * Image->Height;
- NewImage->SizeOfData = NewImage->SizeOfPlane;
- NewImage->Format = IL_COLOUR_INDEX;
- NewImage->Type = IL_UNSIGNED_BYTE;
- NewImage->Pal.PalSize = netsizethink * 3;
- NewImage->Pal.PalType = IL_PAL_BGR24;
- NewImage->Pal.Palette = (ILubyte*)ialloc(256*3);
- if (NewImage->Pal.Palette == NULL) {
- ilCloseImage(TempImage);
- ilCloseImage(NewImage);
- return NULL;
- }
- for (i = 0, j = 0; i < (unsigned)netsizethink; i++, j += 3) {
- NewImage->Pal.Palette[j ] = network[i][0];
- NewImage->Pal.Palette[j+1] = network[i][1];
- NewImage->Pal.Palette[j+2] = network[i][2];
- }
- inxbuild();
- for (i = 0, j = 0; j < TempImage->SizeOfData; i++, j += 3) {
- NewImage->Data[i] = inxsearch(
- TempImage->Data[j], TempImage->Data[j+1], TempImage->Data[j+2]);
- }
- ilCloseImage(TempImage);
- return NewImage;
- }