Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
SkMatrix.cpp
Package: XSDYM.rar [view]
Upload User: micun2005
Upload Date: 2020-11-27
Package Size: 11738k
Code Size: 54k
Category:
Other Riddle games
Development Platform:
Visual C++
- /* libs/corecg/SkMatrix.cpp
- **
- ** Copyright 2006, Google Inc.
- **
- ** Licensed under the Apache License, Version 2.0 (the "License");
- ** you may not use this file except in compliance with the License.
- ** You may obtain a copy of the License at
- **
- ** http://www.apache.org/licenses/LICENSE-2.0
- **
- ** Unless required by applicable law or agreed to in writing, software
- ** distributed under the License is distributed on an "AS IS" BASIS,
- ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- ** See the License for the specific language governing permissions and
- ** limitations under the License.
- */
- #include "SkMatrix.h"
- #include "Sk64.h"
- #include "SkFloatBits.h"
- #ifdef SK_SCALAR_IS_FLOAT
- #define kMatrix22Elem SK_Scalar1
- #else
- #define kMatrix22Elem SK_Fract1
- #endif
- /* [scale-x skew-x trans-x] [X] [X']
- [skew-y scale-y trans-y] * [Y] = [Y']
- [persp-0 persp-1 persp-2] [1] [1 ]
- */
- void SkMatrix::reset() {
- fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1;
- fMat[kMSkewX] = fMat[kMSkewY] =
- fMat[kMTransX] = fMat[kMTransY] =
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- fMat[kMPersp2] = kMatrix22Elem;
- this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask);
- }
- static inline int has_perspective(const SkMatrix& matrix) {
- return matrix.getType() & SkMatrix::kPerspective_Mask;
- }
- // this guy aligns with the masks, so we can compute a mask from a varaible 0/1
- enum {
- kTranslate_Shift,
- kScale_Shift,
- kAffine_Shift,
- kPerspective_Shift,
- kRectStaysRect_Shift
- };
- #ifdef SK_SCALAR_IS_FLOAT
- static const int32_t kScalar1Int = 0x3f800000;
- static const int32_t kPersp1Int = 0x3f800000;
- #else
- #define scalarAsInt(x) (x)
- static const int32_t kScalar1Int = (1 << 16);
- static const int32_t kPersp1Int = (1 << 30);
- #endif
- uint8_t SkMatrix::computeTypeMask() const {
- unsigned mask = 0;
- if (SkScalarAsInt(fMat[kMPersp0]) | SkScalarAsInt(fMat[kMPersp1]) |
- (SkScalarAsInt(fMat[kMPersp2]) - kPersp1Int)) {
- mask |= kPerspective_Mask;
- }
- if (SkScalarAsInt(fMat[kMTransX]) | SkScalarAsInt(fMat[kMTransY])) {
- mask |= kTranslate_Mask;
- }
- int m00 = SkScalarAsInt(fMat[SkMatrix::kMScaleX]);
- int m01 = SkScalarAsInt(fMat[SkMatrix::kMSkewX]);
- int m10 = SkScalarAsInt(fMat[SkMatrix::kMSkewY]);
- int m11 = SkScalarAsInt(fMat[SkMatrix::kMScaleY]);
- if (m01 | m10) {
- mask |= kAffine_Mask;
- }
- if ((m00 - kScalar1Int) | (m11 - kScalar1Int)) {
- mask |= kScale_Mask;
- }
- if ((mask & kPerspective_Mask) == 0) {
- // map non-zero to 1
- m00 = m00 != 0;
- m01 = m01 != 0;
- m10 = m10 != 0;
- m11 = m11 != 0;
- // record if the (p)rimary and (s)econdary diagonals are all 0 or
- // all non-zero (answer is 0 or 1)
- int dp0 = (m00 | m11) ^ 1; // true if both are 0
- int dp1 = m00 & m11; // true if both are 1
- int ds0 = (m01 | m10) ^ 1; // true if both are 0
- int ds1 = m01 & m10; // true if both are 1
- // return 1 if primary is 1 and secondary is 0 or
- // primary is 0 and secondary is 1
- mask |= ((dp0 & ds1) | (dp1 & ds0)) << kRectStaysRect_Shift;
- }
- return SkToU8(mask);
- }
- ///////////////////////////////////////////////////////////////////////////////
- void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) {
- if (SkScalarAsInt(dx) | SkScalarAsInt(dy)) {
- fMat[kMTransX] = dx;
- fMat[kMTransY] = dy;
- fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1;
- fMat[kMSkewX] = fMat[kMSkewY] =
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- fMat[kMPersp2] = kMatrix22Elem;
- this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask);
- } else {
- this->reset();
- }
- }
- bool SkMatrix::preTranslate(SkScalar dx, SkScalar dy) {
- if (has_perspective(*this)) {
- SkMatrix m;
- m.setTranslate(dx, dy);
- return this->preConcat(m);
- }
- if (SkScalarAsInt(dx) | SkScalarAsInt(dy)) {
- fMat[kMTransX] += SkScalarMul(fMat[kMScaleX], dx) +
- SkScalarMul(fMat[kMSkewX], dy);
- fMat[kMTransY] += SkScalarMul(fMat[kMSkewY], dx) +
- SkScalarMul(fMat[kMScaleY], dy);
- this->setTypeMask(kUnknown_Mask);
- }
- return true;
- }
- bool SkMatrix::postTranslate(SkScalar dx, SkScalar dy) {
- if (has_perspective(*this)) {
- SkMatrix m;
- m.setTranslate(dx, dy);
- return this->postConcat(m);
- }
- if (SkScalarAsInt(dx) | SkScalarAsInt(dy)) {
- fMat[kMTransX] += dx;
- fMat[kMTransY] += dy;
- this->setTypeMask(kUnknown_Mask);
- }
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////
- void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
- fMat[kMScaleX] = sx;
- fMat[kMScaleY] = sy;
- fMat[kMTransX] = px - SkScalarMul(sx, px);
- fMat[kMTransY] = py - SkScalarMul(sy, py);
- fMat[kMPersp2] = kMatrix22Elem;
- fMat[kMSkewX] = fMat[kMSkewY] =
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- this->setTypeMask(kScale_Mask | kTranslate_Mask | kRectStaysRect_Mask);
- }
- void SkMatrix::setScale(SkScalar sx, SkScalar sy) {
- fMat[kMScaleX] = sx;
- fMat[kMScaleY] = sy;
- fMat[kMPersp2] = kMatrix22Elem;
- fMat[kMTransX] = fMat[kMTransY] =
- fMat[kMSkewX] = fMat[kMSkewY] =
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- this->setTypeMask(kScale_Mask | kRectStaysRect_Mask);
- }
- bool SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
- SkMatrix m;
- m.setScale(sx, sy, px, py);
- return this->preConcat(m);
- }
- bool SkMatrix::preScale(SkScalar sx, SkScalar sy) {
- SkMatrix m;
- m.setScale(sx, sy);
- return this->preConcat(m);
- }
- bool SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
- SkMatrix m;
- m.setScale(sx, sy, px, py);
- return this->postConcat(m);
- }
- bool SkMatrix::postScale(SkScalar sx, SkScalar sy) {
- SkMatrix m;
- m.setScale(sx, sy);
- return this->postConcat(m);
- }
- #ifdef SK_SCALAR_IS_FIXED
- static inline SkFixed roundidiv(SkFixed numer, int denom) {
- int ns = numer >> 31;
- int ds = denom >> 31;
- numer = (numer ^ ns) - ns;
- denom = (denom ^ ds) - ds;
- SkFixed answer = (numer + (denom >> 1)) / denom;
- int as = ns ^ ds;
- return (answer ^ as) - as;
- }
- #endif
- // this guy perhaps can go away, if we have a fract/high-precision way to
- // scale matrices
- bool SkMatrix::postIDiv(int divx, int divy) {
- if (divx == 0 || divy == 0) {
- return false;
- }
- #ifdef SK_SCALAR_IS_FIXED
- fMat[kMScaleX] = roundidiv(fMat[kMScaleX], divx);
- fMat[kMSkewX] = roundidiv(fMat[kMSkewX], divx);
- fMat[kMTransX] = roundidiv(fMat[kMTransX], divx);
- fMat[kMScaleY] = roundidiv(fMat[kMScaleY], divy);
- fMat[kMSkewY] = roundidiv(fMat[kMSkewY], divy);
- fMat[kMTransY] = roundidiv(fMat[kMTransY], divy);
- #else
- const float invX = 1.f / divx;
- const float invY = 1.f / divy;
- fMat[kMScaleX] *= invX;
- fMat[kMSkewX] *= invX;
- fMat[kMTransX] *= invX;
- fMat[kMScaleY] *= invY;
- fMat[kMSkewY] *= invY;
- fMat[kMTransY] *= invY;
- #endif
- this->setTypeMask(kUnknown_Mask);
- return true;
- }
- ////////////////////////////////////////////////////////////////////////////////////
- void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV,
- SkScalar px, SkScalar py) {
- const SkScalar oneMinusCosV = SK_Scalar1 - cosV;
- fMat[kMScaleX] = cosV;
- fMat[kMSkewX] = -sinV;
- fMat[kMTransX] = SkScalarMul(sinV, py) + SkScalarMul(oneMinusCosV, px);
- fMat[kMSkewY] = sinV;
- fMat[kMScaleY] = cosV;
- fMat[kMTransY] = SkScalarMul(-sinV, px) + SkScalarMul(oneMinusCosV, py);
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- fMat[kMPersp2] = kMatrix22Elem;
- this->setTypeMask(kUnknown_Mask);
- }
- void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) {
- fMat[kMScaleX] = cosV;
- fMat[kMSkewX] = -sinV;
- fMat[kMTransX] = 0;
- fMat[kMSkewY] = sinV;
- fMat[kMScaleY] = cosV;
- fMat[kMTransY] = 0;
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- fMat[kMPersp2] = kMatrix22Elem;
- this->setTypeMask(kUnknown_Mask);
- }
- void SkMatrix::setRotate(SkScalar degrees, SkScalar px, SkScalar py) {
- SkScalar sinV, cosV;
- sinV = SkScalarSinCos(SkDegreesToRadians(degrees), &cosV);
- this->setSinCos(sinV, cosV, px, py);
- }
- void SkMatrix::setRotate(SkScalar degrees) {
- SkScalar sinV, cosV;
- sinV = SkScalarSinCos(SkDegreesToRadians(degrees), &cosV);
- this->setSinCos(sinV, cosV);
- }
- bool SkMatrix::preRotate(SkScalar degrees, SkScalar px, SkScalar py) {
- SkMatrix m;
- m.setRotate(degrees, px, py);
- return this->preConcat(m);
- }
- bool SkMatrix::preRotate(SkScalar degrees) {
- SkMatrix m;
- m.setRotate(degrees);
- return this->preConcat(m);
- }
- bool SkMatrix::postRotate(SkScalar degrees, SkScalar px, SkScalar py) {
- SkMatrix m;
- m.setRotate(degrees, px, py);
- return this->postConcat(m);
- }
- bool SkMatrix::postRotate(SkScalar degrees) {
- SkMatrix m;
- m.setRotate(degrees);
- return this->postConcat(m);
- }
- ////////////////////////////////////////////////////////////////////////////////////
- void SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
- fMat[kMScaleX] = SK_Scalar1;
- fMat[kMSkewX] = sx;
- fMat[kMTransX] = SkScalarMul(-sx, py);
- fMat[kMSkewY] = sy;
- fMat[kMScaleY] = SK_Scalar1;
- fMat[kMTransY] = SkScalarMul(-sy, px);
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- fMat[kMPersp2] = kMatrix22Elem;
- this->setTypeMask(kUnknown_Mask);
- }
- void SkMatrix::setSkew(SkScalar sx, SkScalar sy) {
- fMat[kMScaleX] = SK_Scalar1;
- fMat[kMSkewX] = sx;
- fMat[kMTransX] = 0;
- fMat[kMSkewY] = sy;
- fMat[kMScaleY] = SK_Scalar1;
- fMat[kMTransY] = 0;
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- fMat[kMPersp2] = kMatrix22Elem;
- this->setTypeMask(kUnknown_Mask);
- }
- bool SkMatrix::preSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
- SkMatrix m;
- m.setSkew(sx, sy, px, py);
- return this->preConcat(m);
- }
- bool SkMatrix::preSkew(SkScalar sx, SkScalar sy) {
- SkMatrix m;
- m.setSkew(sx, sy);
- return this->preConcat(m);
- }
- bool SkMatrix::postSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
- SkMatrix m;
- m.setSkew(sx, sy, px, py);
- return this->postConcat(m);
- }
- bool SkMatrix::postSkew(SkScalar sx, SkScalar sy) {
- SkMatrix m;
- m.setSkew(sx, sy);
- return this->postConcat(m);
- }
- ///////////////////////////////////////////////////////////////////////////////
- bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
- ScaleToFit align)
- {
- if (src.isEmpty()) {
- this->reset();
- return false;
- }
- if (dst.isEmpty()) {
- bzero(fMat, 8 * sizeof(SkScalar));
- this->setTypeMask(kScale_Mask | kRectStaysRect_Mask);
- } else {
- SkScalar tx, sx = SkScalarDiv(dst.width(), src.width());
- SkScalar ty, sy = SkScalarDiv(dst.height(), src.height());
- bool xLarger = false;
- if (align != kFill_ScaleToFit) {
- if (sx > sy) {
- xLarger = true;
- sx = sy;
- } else {
- sy = sx;
- }
- }
- tx = dst.fLeft - SkScalarMul(src.fLeft, sx);
- ty = dst.fTop - SkScalarMul(src.fTop, sy);
- if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) {
- SkScalar diff;
- if (xLarger) {
- diff = dst.width() - SkScalarMul(src.width(), sy);
- } else {
- diff = dst.height() - SkScalarMul(src.height(), sy);
- }
- if (align == kCenter_ScaleToFit) {
- diff = SkScalarHalf(diff);
- }
- if (xLarger) {
- tx += diff;
- } else {
- ty += diff;
- }
- }
- fMat[kMScaleX] = sx;
- fMat[kMScaleY] = sy;
- fMat[kMTransX] = tx;
- fMat[kMTransY] = ty;
- fMat[kMSkewX] = fMat[kMSkewY] =
- fMat[kMPersp0] = fMat[kMPersp1] = 0;
- this->setTypeMask(kScale_Mask | kTranslate_Mask | kRectStaysRect_Mask);
- }
- // shared cleanup
- fMat[kMPersp2] = kMatrix22Elem;
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////
- #ifdef SK_SCALAR_IS_FLOAT
- static inline int fixmuladdmul(float a, float b, float c, float d,
- float* result) {
- *result = a * b + c * d;
- return true;
- }
- static inline int fixmuladdmulshiftmul(float a, float b, float c, float d,
- int /*shift not used*/, float scale, float* result) {
- *result = (a * b + c * d) * scale;
- return true;
- }
- static inline bool rowcol3(const float row[], const float col[],
- float* result) {
- *result = row[0] * col[0] + row[1] * col[3] + row[2] * col[6];
- return true;
- }
- static inline int negifaddoverflows(float& result, float a, float b) {
- result = a + b;
- return 0;
- }
- #else
- static inline bool fixmuladdmul(SkFixed a, SkFixed b, SkFixed c, SkFixed d,
- SkFixed* result) {
- Sk64 tmp1, tmp2;
- tmp1.setMul(a, b);
- tmp2.setMul(c, d);
- tmp1.add(tmp2);
- if (tmp1.isFixed()) {
- *result = tmp1.getFixed();
- return true;
- }
- return false;
- }
- static inline bool fixmuladdmulshiftmul(SkFixed a, SkFixed b, SkFixed c,
- SkFixed d, int shift, SkFixed scale, SkFixed* result) {
- Sk64 tmp1, tmp2;
- tmp1.setMul(a, b);
- tmp2.setMul(c, d);
- tmp1.add(tmp2);
- int32_t hi = SkAbs32(tmp1.fHi);
- int afterShift = 16;
- if (hi >> 15) {
- int clz = 17 - SkCLZ(hi);
- SkASSERT(clz > 0 && clz <= 16);
- afterShift -= clz;
- shift += clz;
- }
- tmp1.roundRight(shift + 16);
- SkASSERT(tmp1.is32());
- tmp1.setMul(tmp1.get32(), scale);
- tmp1.roundRight(afterShift);
- if (tmp1.is32()) {
- *result = tmp1.get32();
- return true;
- }
- return false;
- }
- static inline SkFixed fracmuladdmul(SkFixed a, SkFract b, SkFixed c,
- SkFract d) {
- Sk64 tmp1, tmp2;
- tmp1.setMul(a, b);
- tmp2.setMul(c, d);
- tmp1.add(tmp2);
- return tmp1.getFract();
- }
- static inline bool rowcol3(const SkFixed row[], const SkFixed col[],
- SkFixed* result) {
- Sk64 tmp1, tmp2;
- tmp1.setMul(row[0], col[0]); // N * fixed
- tmp2.setMul(row[1], col[3]); // N * fixed
- tmp1.add(tmp2);
- tmp2.setMul(row[2], col[6]); // N * fract
- tmp2.roundRight(14); // make it fixed
- tmp1.add(tmp2);
- if (tmp1.isFixed()) {
- *result = tmp1.getFixed();
- return true;
- }
- return false;
- }
- static inline int negifaddoverflows(SkFixed& result, SkFixed a, SkFixed b) {
- SkFixed c = a + b;
- result = c;
- return (c ^ a) & (c ^ b);
- }
- #endif
- static void normalize_perspective(SkScalar mat[9]) {
- if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > kMatrix22Elem) {
- for (int i = 0; i < 9; i++)
- mat[i] = SkScalarHalf(mat[i]);
- }
- }
- bool SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) {
- TypeMask aType = a.getType();
- TypeMask bType = b.getType();
- if (0 == aType) {
- *this = b;
- } else if (0 == bType) {
- *this = a;
- } else {
- SkMatrix tmp;
- if ((aType | bType) & kPerspective_Mask) {
- if (!rowcol3(&a.fMat[0], &b.fMat[0], &tmp.fMat[kMScaleX])) {
- return false;
- }
- if (!rowcol3(&a.fMat[0], &b.fMat[1], &tmp.fMat[kMSkewX])) {
- return false;
- }
- if (!rowcol3(&a.fMat[0], &b.fMat[2], &tmp.fMat[kMTransX])) {
- return false;
- }
- if (!rowcol3(&a.fMat[3], &b.fMat[0], &tmp.fMat[kMSkewY])) {
- return false;
- }
- if (!rowcol3(&a.fMat[3], &b.fMat[1], &tmp.fMat[kMScaleY])) {
- return false;
- }
- if (!rowcol3(&a.fMat[3], &b.fMat[2], &tmp.fMat[kMTransY])) {
- return false;
- }
- if (!rowcol3(&a.fMat[6], &b.fMat[0], &tmp.fMat[kMPersp0])) {
- return false;
- }
- if (!rowcol3(&a.fMat[6], &b.fMat[1], &tmp.fMat[kMPersp1])) {
- return false;
- }
- if (!rowcol3(&a.fMat[6], &b.fMat[2], &tmp.fMat[kMPersp2])) {
- return false;
- }
- normalize_perspective(tmp.fMat);
- } else { // not perspective
- if (!fixmuladdmul(a.fMat[kMScaleX], b.fMat[kMScaleX],
- a.fMat[kMSkewX], b.fMat[kMSkewY], &tmp.fMat[kMScaleX])) {
- return false;
- }
- if (!fixmuladdmul(a.fMat[kMScaleX], b.fMat[kMSkewX],
- a.fMat[kMSkewX], b.fMat[kMScaleY], &tmp.fMat[kMSkewX])) {
- return false;
- }
- if (!fixmuladdmul(a.fMat[kMScaleX], b.fMat[kMTransX],
- a.fMat[kMSkewX], b.fMat[kMTransY], &tmp.fMat[kMTransX])) {
- return false;
- }
- if (negifaddoverflows(tmp.fMat[kMTransX], tmp.fMat[kMTransX],
- a.fMat[kMTransX]) < 0) {
- return false;
- }
- if (!fixmuladdmul(a.fMat[kMSkewY], b.fMat[kMScaleX],
- a.fMat[kMScaleY], b.fMat[kMSkewY], &tmp.fMat[kMSkewY])) {
- return false;
- }
- if (!fixmuladdmul(a.fMat[kMSkewY], b.fMat[kMSkewX],
- a.fMat[kMScaleY], b.fMat[kMScaleY], &tmp.fMat[kMScaleY])) {
- return false;
- }
- if (!fixmuladdmul(a.fMat[kMSkewY], b.fMat[kMTransX],
- a.fMat[kMScaleY], b.fMat[kMTransY], &tmp.fMat[kMTransY])) {
- return false;
- }
- if (negifaddoverflows(tmp.fMat[kMTransY], tmp.fMat[kMTransY],
- a.fMat[kMTransY]) < 0) {
- return false;
- }
- tmp.fMat[kMPersp0] = tmp.fMat[kMPersp1] = 0;
- tmp.fMat[kMPersp2] = kMatrix22Elem;
- }
- *this = tmp;
- }
- this->setTypeMask(kUnknown_Mask);
- return true;
- }
- bool SkMatrix::preConcat(const SkMatrix& mat) {
- return this->setConcat(*this, mat);
- }
- bool SkMatrix::postConcat(const SkMatrix& mat) {
- return this->setConcat(mat, *this);
- }
- ///////////////////////////////////////////////////////////////////////////////
- #ifdef SK_SCALAR_IS_FLOAT
- #define SkPerspMul(a, b) SkScalarMul(a, b)
- #define SkScalarMulShift(a, b, s) SkScalarMul(a, b)
- static float sk_inv_determinant(const float mat[9], int isPerspective,
- int* /* (only used in Fixed case) */) {
- double det;
- if (isPerspective) {
- det = mat[SkMatrix::kMScaleX] * ((double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp2] - (double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp1]) +
- mat[SkMatrix::kMSkewX] * ((double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp0] - (double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp2]) +
- mat[SkMatrix::kMTransX] * ((double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp1] - (double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp0]);
- } else {
- det = (double)mat[SkMatrix::kMScaleX] * mat[SkMatrix::kMScaleY] - (double)mat[SkMatrix::kMSkewX] * mat[SkMatrix::kMSkewY];
- }
- // Since the determinant is on the order of the square of the matrix members,
- // compare to the square of the default nearly-zero constant
- if (SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
- return 0;
- }
- return (float)(1.0 / det);
- }
- #else
- #define SkPerspMul(a, b) SkFractMul(a, b)
- #define SkScalarMulShift(a, b, s) SkMulShift(a, b, s)
- static void set_muladdmul(Sk64* dst, int32_t a, int32_t b, int32_t c,
- int32_t d) {
- Sk64 tmp;
- dst->setMul(a, b);
- tmp.setMul(c, d);
- dst->add(tmp);
- }
- static SkFixed sk_inv_determinant(const SkFixed mat[9], int isPerspective,
- int* shift) {
- Sk64 tmp1, tmp2;
- if (isPerspective) {
- tmp1.setMul(mat[SkMatrix::kMScaleX], fracmuladdmul(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], -mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]));
- tmp2.setMul(mat[SkMatrix::kMSkewX], fracmuladdmul(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], -mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2]));
- tmp1.add(tmp2);
- tmp2.setMul(mat[SkMatrix::kMTransX], fracmuladdmul(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1], -mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]));
- tmp1.add(tmp2);
- } else {
- tmp1.setMul(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY]);
- tmp2.setMul(mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]);
- tmp1.sub(tmp2);
- }
- int s = tmp1.getClzAbs();
- *shift = s;
- SkFixed denom;
- if (s <= 32) {
- denom = tmp1.getShiftRight(33 - s);
- } else {
- denom = (int32_t)tmp1.fLo << (s - 33);
- }
- if (denom == 0) {
- return 0;
- }
- /** This could perhaps be a special fractdiv function, since both of its
- arguments are known to have bit 31 clear and bit 30 set (when they
- are made positive), thus eliminating the need for calling clz()
- */
- return SkFractDiv(SK_Fract1, denom);
- }
- #endif
- bool SkMatrix::invert(SkMatrix* inv) const {
- int isPersp = has_perspective(*this);
- int shift;
- SkScalar scale = sk_inv_determinant(fMat, isPersp, &shift);
- if (scale == 0) { // underflow
- return false;
- }
- if (inv) {
- SkMatrix tmp;
- if (inv == this)
- inv = &tmp;
- if (isPersp) {
- shift = 61 - shift;
- inv->fMat[kMScaleX] = SkScalarMulShift(SkPerspMul(fMat[kMScaleY], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransY], fMat[kMPersp1]), scale, shift);
- inv->fMat[kMSkewX] = SkScalarMulShift(SkPerspMul(fMat[kMTransX], fMat[kMPersp1]) - SkPerspMul(fMat[kMSkewX], fMat[kMPersp2]), scale, shift);
- inv->fMat[kMTransX] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMTransY]) - SkScalarMul(fMat[kMTransX], fMat[kMScaleY]), scale, shift);
- inv->fMat[kMSkewY] = SkScalarMulShift(SkPerspMul(fMat[kMTransY], fMat[kMPersp0]) - SkPerspMul(fMat[kMSkewY], fMat[kMPersp2]), scale, shift);
- inv->fMat[kMScaleY] = SkScalarMulShift(SkPerspMul(fMat[kMScaleX], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransX], fMat[kMPersp0]), scale, shift);
- inv->fMat[kMTransY] = SkScalarMulShift(SkScalarMul(fMat[kMTransX], fMat[kMSkewY]) - SkScalarMul(fMat[kMScaleX], fMat[kMTransY]), scale, shift);
- inv->fMat[kMPersp0] = SkScalarMulShift(SkScalarMul(fMat[kMSkewY], fMat[kMPersp1]) - SkScalarMul(fMat[kMScaleY], fMat[kMPersp0]), scale, shift);
- inv->fMat[kMPersp1] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMPersp0]) - SkScalarMul(fMat[kMScaleX], fMat[kMPersp1]), scale, shift);
- inv->fMat[kMPersp2] = SkScalarMulShift(SkScalarMul(fMat[kMScaleX], fMat[kMScaleY]) - SkScalarMul(fMat[kMSkewX], fMat[kMSkewY]), scale, shift);
- #ifdef SK_SCALAR_IS_FIXED
- if (SkAbs32(inv->fMat[kMPersp2]) > SK_Fixed1) {
- Sk64 tmp;
- tmp.set(SK_Fract1);
- tmp.shiftLeft(16);
- tmp.div(inv->fMat[kMPersp2], Sk64::kRound_DivOption);
- SkFract scale = tmp.get32();
- for (int i = 0; i < 9; i++) {
- inv->fMat[i] = SkFractMul(inv->fMat[i], scale);
- }
- }
- inv->fMat[kMPersp2] = SkFixedToFract(inv->fMat[kMPersp2]);
- #endif
- } else { // not perspective
- #ifdef SK_SCALAR_IS_FIXED
- Sk64 tx, ty;
- int clzNumer;
- // check the 2x2 for overflow
- {
- int32_t value = SkAbs32(fMat[kMScaleY]);
- value |= SkAbs32(fMat[kMSkewX]);
- value |= SkAbs32(fMat[kMScaleX]);
- value |= SkAbs32(fMat[kMSkewY]);
- clzNumer = SkCLZ(value);
- if (shift - clzNumer > 31)
- return false; // overflow
- }
- set_muladdmul(&tx, fMat[kMSkewX], fMat[kMTransY], -fMat[kMScaleY], fMat[kMTransX]);
- set_muladdmul(&ty, fMat[kMSkewY], fMat[kMTransX], -fMat[kMScaleX], fMat[kMTransY]);
- // check tx,ty for overflow
- clzNumer = SkCLZ(SkAbs32(tx.fHi) | SkAbs32(ty.fHi));
- if (shift - clzNumer > 14) {
- return false; // overflow
- }
- int fixedShift = 61 - shift;
- int sk64shift = 44 - shift + clzNumer;
- inv->fMat[kMScaleX] = SkMulShift(fMat[kMScaleY], scale, fixedShift);
- inv->fMat[kMSkewX] = SkMulShift(-fMat[kMSkewX], scale, fixedShift);
- inv->fMat[kMTransX] = SkMulShift(tx.getShiftRight(33 - clzNumer), scale, sk64shift);
- inv->fMat[kMSkewY] = SkMulShift(-fMat[kMSkewY], scale, fixedShift);
- inv->fMat[kMScaleY] = SkMulShift(fMat[kMScaleX], scale, fixedShift);
- inv->fMat[kMTransY] = SkMulShift(ty.getShiftRight(33 - clzNumer), scale, sk64shift);
- #else
- inv->fMat[kMScaleX] = SkScalarMul(fMat[kMScaleY], scale);
- inv->fMat[kMSkewX] = SkScalarMul(-fMat[kMSkewX], scale);
- if (!fixmuladdmulshiftmul(fMat[kMSkewX], fMat[kMTransY], -fMat[kMScaleY], fMat[kMTransX], shift, scale, &inv->fMat[kMTransX])) {
- return false;
- }
- inv->fMat[kMSkewY] = SkScalarMul(-fMat[kMSkewY], scale);
- inv->fMat[kMScaleY] = SkScalarMul(fMat[kMScaleX], scale);
- if (!fixmuladdmulshiftmul(fMat[kMSkewY], fMat[kMTransX], -fMat[kMScaleX], fMat[kMTransY], shift, scale, &inv->fMat[kMTransY])) {
- return false;
- }
- #endif
- inv->fMat[kMPersp0] = 0;
- inv->fMat[kMPersp1] = 0;
- inv->fMat[kMPersp2] = kMatrix22Elem;
- }
- if (inv == &tmp) {
- *(SkMatrix*)this = tmp;
- }
- inv->setTypeMask(kUnknown_Mask);
- }
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////
- void SkMatrix::Identity_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT(m.getType() == 0);
- if (dst != src && count > 0)
- memcpy(dst, src, count * sizeof(SkPoint));
- }
- void SkMatrix::Trans_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT(m.getType() == kTranslate_Mask);
- if (count > 0) {
- SkScalar tx = m.fMat[kMTransX];
- SkScalar ty = m.fMat[kMTransY];
- do {
- dst->fY = src->fY + ty;
- dst->fX = src->fX + tx;
- src += 1;
- dst += 1;
- } while (--count);
- }
- }
- void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT(m.getType() == kScale_Mask);
- if (count > 0) {
- SkScalar mx = m.fMat[kMScaleX];
- SkScalar my = m.fMat[kMScaleY];
- do {
- dst->fY = SkScalarMul(src->fY, my);
- dst->fX = SkScalarMul(src->fX, mx);
- src += 1;
- dst += 1;
- } while (--count);
- }
- }
- void SkMatrix::ScaleTrans_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT(m.getType() == (kScale_Mask | kTranslate_Mask));
- if (count > 0) {
- SkScalar mx = m.fMat[kMScaleX];
- SkScalar my = m.fMat[kMScaleY];
- SkScalar tx = m.fMat[kMTransX];
- SkScalar ty = m.fMat[kMTransY];
- do {
- dst->fY = SkScalarMulAdd(src->fY, my, ty);
- dst->fX = SkScalarMulAdd(src->fX, mx, tx);
- src += 1;
- dst += 1;
- } while (--count);
- }
- }
- void SkMatrix::Rot_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT((m.getType() & (kPerspective_Mask | kTranslate_Mask)) == 0);
- if (count > 0) {
- SkScalar mx = m.fMat[kMScaleX];
- SkScalar my = m.fMat[kMScaleY];
- SkScalar kx = m.fMat[kMSkewX];
- SkScalar ky = m.fMat[kMSkewY];
- do {
- SkScalar sy = src->fY;
- SkScalar sx = src->fX;
- src += 1;
- dst->fY = SkScalarMul(sx, ky) + SkScalarMul(sy, my);
- dst->fX = SkScalarMul(sx, mx) + SkScalarMul(sy, kx);
- dst += 1;
- } while (--count);
- }
- }
- void SkMatrix::RotTrans_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT((m.getType() & kPerspective_Mask) == 0);
- if (count > 0) {
- SkScalar mx = m.fMat[kMScaleX];
- SkScalar my = m.fMat[kMScaleY];
- SkScalar kx = m.fMat[kMSkewX];
- SkScalar ky = m.fMat[kMSkewY];
- SkScalar tx = m.fMat[kMTransX];
- SkScalar ty = m.fMat[kMTransY];
- do {
- SkScalar sy = src->fY;
- SkScalar sx = src->fX;
- src += 1;
- dst->fY = SkScalarMul(sx, ky) + SkScalarMulAdd(sy, my, ty);
- dst->fX = SkScalarMul(sx, mx) + SkScalarMulAdd(sy, kx, tx);
- dst += 1;
- } while (--count);
- }
- }
- void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[],
- const SkPoint src[], int count) {
- SkASSERT(m.getType() & kPerspective_Mask);
- #ifdef SK_SCALAR_IS_FIXED
- SkFixed persp2 = SkFractToFixed(m.fMat[kMPersp2]);
- #endif
- if (count > 0) {
- do {
- SkScalar sy = src->fY;
- SkScalar sx = src->fX;
- src += 1;
- SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) +
- SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
- SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) +
- SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
- #ifdef SK_SCALAR_IS_FIXED
- SkFixed z = SkFractMul(sx, m.fMat[kMPersp0]) +
- SkFractMul(sy, m.fMat[kMPersp1]) + persp2;
- #else
- float z = SkScalarMul(sx, m.fMat[kMPersp0]) +
- SkScalarMulAdd(sy, m.fMat[kMPersp1], m.fMat[kMPersp2]);
- #endif
- if (z) {
- z = SkScalarFastInvert(z);
- }
- dst->fY = SkScalarMul(y, z);
- dst->fX = SkScalarMul(x, z);
- dst += 1;
- } while (--count);
- }
- }
- const SkMatrix::MapPtsProc SkMatrix::gMapPtsProcs[] = {
- SkMatrix::Identity_pts, SkMatrix::Trans_pts,
- SkMatrix::Scale_pts, SkMatrix::ScaleTrans_pts,
- SkMatrix::Rot_pts, SkMatrix::RotTrans_pts,
- SkMatrix::Rot_pts, SkMatrix::RotTrans_pts,
- // repeat the persp proc 8 times
- SkMatrix::Persp_pts, SkMatrix::Persp_pts,
- SkMatrix::Persp_pts, SkMatrix::Persp_pts,
- SkMatrix::Persp_pts, SkMatrix::Persp_pts,
- SkMatrix::Persp_pts, SkMatrix::Persp_pts
- };
- void SkMatrix::mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
- SkASSERT((dst && src && count > 0) || count == 0);
- // no partial overlap
- SkASSERT(src == dst || SkAbs32((int32_t)(src - dst)) >= count);
- this->getMapPtsProc()(*this, dst, src, count);
- }
- ///////////////////////////////////////////////////////////////////////////////
- void SkMatrix::mapVectors(SkPoint dst[], const SkPoint src[], int count) const {
- if (this->getType() & kPerspective_Mask) {
- SkPoint origin;
- MapXYProc proc = this->getMapXYProc();
- proc(*this, 0, 0, &origin);
- for (int i = count - 1; i >= 0; --i) {
- SkPoint tmp;
- proc(*this, src[i].fX, src[i].fY, &tmp);
- dst[i].set(tmp.fX - origin.fX, tmp.fY - origin.fY);
- }
- } else {
- SkMatrix tmp = *this;
- tmp.fMat[kMTransX] = tmp.fMat[kMTransY] = 0;
- tmp.clearTypeMask(kTranslate_Mask);
- tmp.mapPoints(dst, src, count);
- }
- }
- bool SkMatrix::mapRect(SkRect* dst, const SkRect& src) const {
- SkASSERT(dst && &src);
- if (this->rectStaysRect()) {
- this->mapPoints((SkPoint*)dst, (const SkPoint*)&src, 2);
- dst->sort();
- return true;
- } else {
- SkPoint quad[4];
- src.toQuad(quad);
- this->mapPoints(quad, quad, 4);
- dst->set(quad, 4);
- return false;
- }
- }
- SkScalar SkMatrix::mapRadius(SkScalar radius) const {
- SkVector vec[2];
- vec[0].set(radius, 0);
- vec[1].set(0, radius);
- this->mapVectors(vec, 2);
- SkScalar d0 = vec[0].length();
- SkScalar d1 = vec[1].length();
- return SkScalarMean(d0, d1);
- }
- ///////////////////////////////////////////////////////////////////////////////
- void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT(m.getType() & kPerspective_Mask);
- SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) +
- SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
- SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) +
- SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
- #ifdef SK_SCALAR_IS_FIXED
- SkFixed z = SkFractMul(sx, m.fMat[kMPersp0]) +
- SkFractMul(sy, m.fMat[kMPersp1]) +
- SkFractToFixed(m.fMat[kMPersp2]);
- #else
- float z = SkScalarMul(sx, m.fMat[kMPersp0]) +
- SkScalarMul(sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
- #endif
- if (z) {
- z = SkScalarFastInvert(z);
- }
- pt->fX = SkScalarMul(x, z);
- pt->fY = SkScalarMul(y, z);
- }
- #ifdef SK_SCALAR_IS_FIXED
- static SkFixed fixmuladdmul(SkFixed a, SkFixed b, SkFixed c, SkFixed d) {
- Sk64 tmp, tmp1;
- tmp.setMul(a, b);
- tmp1.setMul(c, d);
- return tmp.addGetFixed(tmp1);
- // tmp.add(tmp1);
- // return tmp.getFixed();
- }
- #endif
- void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask);
- #ifdef SK_SCALAR_IS_FIXED
- pt->fX = fixmuladdmul(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) +
- m.fMat[kMTransX];
- pt->fY = fixmuladdmul(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) +
- m.fMat[kMTransY];
- #else
- pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) +
- SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]);
- pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) +
- SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
- #endif
- }
- void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask))== kAffine_Mask);
- SkASSERT(0 == m.fMat[kMTransX]);
- SkASSERT(0 == m.fMat[kMTransY]);
- #ifdef SK_SCALAR_IS_FIXED
- pt->fX = fixmuladdmul(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]);
- pt->fY = fixmuladdmul(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]);
- #else
- pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) +
- SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]);
- pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) +
- SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
- #endif
- }
- void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
- == kScale_Mask);
- pt->fX = SkScalarMulAdd(sx, m.fMat[kMScaleX], m.fMat[kMTransX]);
- pt->fY = SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
- }
- void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
- == kScale_Mask);
- SkASSERT(0 == m.fMat[kMTransX]);
- SkASSERT(0 == m.fMat[kMTransY]);
- pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]);
- pt->fY = SkScalarMul(sy, m.fMat[kMScaleY]);
- }
- void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT(m.getType() == kTranslate_Mask);
- pt->fX = sx + m.fMat[kMTransX];
- pt->fY = sy + m.fMat[kMTransY];
- }
- void SkMatrix::Identity_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
- SkPoint* pt) {
- SkASSERT(0 == m.getType());
- pt->fX = sx;
- pt->fY = sy;
- }
- const SkMatrix::MapXYProc SkMatrix::gMapXYProcs[] = {
- SkMatrix::Identity_xy, SkMatrix::Trans_xy,
- SkMatrix::Scale_xy, SkMatrix::ScaleTrans_xy,
- SkMatrix::Rot_xy, SkMatrix::RotTrans_xy,
- SkMatrix::Rot_xy, SkMatrix::RotTrans_xy,
- // repeat the persp proc 8 times
- SkMatrix::Persp_xy, SkMatrix::Persp_xy,
- SkMatrix::Persp_xy, SkMatrix::Persp_xy,
- SkMatrix::Persp_xy, SkMatrix::Persp_xy,
- SkMatrix::Persp_xy, SkMatrix::Persp_xy
- };
- ///////////////////////////////////////////////////////////////////////////////
- // if its nearly zero (just made up 26, perhaps it should be bigger or smaller)
- #ifdef SK_SCALAR_IS_FIXED
- typedef SkFract SkPerspElemType;
- #define PerspNearlyZero(x) (SkAbs32(x) < (SK_Fract1 >> 26))
- #else
- typedef float SkPerspElemType;
- #define PerspNearlyZero(x) SkScalarNearlyZero(x, (1.0f / (1 << 26)))
- #endif
- bool SkMatrix::fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const {
- if (PerspNearlyZero(fMat[kMPersp0])) {
- if (stepX || stepY) {
- if (PerspNearlyZero(fMat[kMPersp1]) &&
- PerspNearlyZero(fMat[kMPersp2] - kMatrix22Elem)) {
- if (stepX) {
- *stepX = SkScalarToFixed(fMat[kMScaleX]);
- }
- if (stepY) {
- *stepY = SkScalarToFixed(fMat[kMSkewY]);
- }
- } else {
- #ifdef SK_SCALAR_IS_FIXED
- SkFixed z = SkFractMul(y, fMat[kMPersp1]) +
- SkFractToFixed(fMat[kMPersp2]);
- #else
- float z = y * fMat[kMPersp1] + fMat[kMPersp2];
- #endif
- if (stepX) {
- *stepX = SkScalarToFixed(SkScalarDiv(fMat[kMScaleX], z));
- }
- if (stepY) {
- *stepY = SkScalarToFixed(SkScalarDiv(fMat[kMSkewY], z));
- }
- }
- }
- return true;
- }
- return false;
- }
- ///////////////////////////////////////////////////////////////////////////////
- #include "SkPerspIter.h"
- SkPerspIter::SkPerspIter(const SkMatrix& m, SkScalar x0, SkScalar y0, int count)
- : fMatrix(m), fSX(x0), fSY(y0), fCount(count) {
- SkPoint pt;
- SkMatrix::Persp_xy(m, x0, y0, &pt);
- fX = SkScalarToFixed(pt.fX);
- fY = SkScalarToFixed(pt.fY);
- }
- int SkPerspIter::next() {
- int n = fCount;
- if (0 == n) {
- return 0;
- }
- SkPoint pt;
- SkFixed x = fX;
- SkFixed y = fY;
- SkFixed dx, dy;
- if (n >= kCount) {
- n = kCount;
- fSX += SkIntToScalar(kCount);
- SkMatrix::Persp_xy(fMatrix, fSX, fSY, &pt);
- fX = SkScalarToFixed(pt.fX);
- fY = SkScalarToFixed(pt.fY);
- dx = (fX - x) >> kShift;
- dy = (fY - y) >> kShift;
- } else {
- fSX += SkIntToScalar(n);
- SkMatrix::Persp_xy(fMatrix, fSX, fSY, &pt);
- fX = SkScalarToFixed(pt.fX);
- fY = SkScalarToFixed(pt.fY);
- dx = (fX - x) / n;
- dy = (fY - y) / n;
- }
- SkFixed* p = fStorage;
- for (int i = 0; i < n; i++) {
- *p++ = x; x += dx;
- *p++ = y; y += dy;
- }
- fCount -= n;
- return n;
- }
- ///////////////////////////////////////////////////////////////////////////////
- #ifdef SK_SCALAR_IS_FIXED
- static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) {
- SkFixed x = SK_Fixed1, y = SK_Fixed1;
- SkPoint pt1, pt2;
- Sk64 w1, w2;
- if (count > 1) {
- pt1.fX = poly[1].fX - poly[0].fX;
- pt1.fY = poly[1].fY - poly[0].fY;
- y = SkPoint::Length(pt1.fX, pt1.fY);
- if (y == 0) {
- return false;
- }
- switch (count) {
- case 2:
- break;
- case 3:
- pt2.fX = poly[0].fY - poly[2].fY;
- pt2.fY = poly[2].fX - poly[0].fX;
- goto CALC_X;
- default:
- pt2.fX = poly[0].fY - poly[3].fY;
- pt2.fY = poly[3].fX - poly[0].fX;
- CALC_X:
- w1.setMul(pt1.fX, pt2.fX);
- w2.setMul(pt1.fY, pt2.fY);
- w1.add(w2);
- w1.div(y, Sk64::kRound_DivOption);
- if (!w1.is32()) {
- return false;
- }
- x = w1.get32();
- break;
- }
- }
- pt->set(x, y);
- return true;
- }
- bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst,
- const SkPoint& scalePt) {
- // need to check if SkFixedDiv overflows...
- const SkFixed scale = scalePt.fY;
- dst->fMat[kMScaleX] = SkFixedDiv(srcPt[1].fY - srcPt[0].fY, scale);
- dst->fMat[kMSkewY] = SkFixedDiv(srcPt[0].fX - srcPt[1].fX, scale);
- dst->fMat[kMPersp0] = 0;
- dst->fMat[kMSkewX] = SkFixedDiv(srcPt[1].fX - srcPt[0].fX, scale);
- dst->fMat[kMScaleY] = SkFixedDiv(srcPt[1].fY - srcPt[0].fY, scale);
- dst->fMat[kMPersp1] = 0;
- dst->fMat[kMTransX] = srcPt[0].fX;
- dst->fMat[kMTransY] = srcPt[0].fY;
- dst->fMat[kMPersp2] = SK_Fract1;
- dst->setTypeMask(kUnknown_Mask);
- return true;
- }
- bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst,
- const SkPoint& scale) {
- // really, need to check if SkFixedDiv overflow'd
- dst->fMat[kMScaleX] = SkFixedDiv(srcPt[2].fX - srcPt[0].fX, scale.fX);
- dst->fMat[kMSkewY] = SkFixedDiv(srcPt[2].fY - srcPt[0].fY, scale.fX);
- dst->fMat[kMPersp0] = 0;
- dst->fMat[kMSkewX] = SkFixedDiv(srcPt[1].fX - srcPt[0].fX, scale.fY);
- dst->fMat[kMScaleY] = SkFixedDiv(srcPt[1].fY - srcPt[0].fY, scale.fY);
- dst->fMat[kMPersp1] = 0;
- dst->fMat[kMTransX] = srcPt[0].fX;
- dst->fMat[kMTransY] = srcPt[0].fY;
- dst->fMat[kMPersp2] = SK_Fract1;
- dst->setTypeMask(kUnknown_Mask);
- return true;
- }
- bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst,
- const SkPoint& scale) {
- SkFract a1, a2;
- SkFixed x0, y0, x1, y1, x2, y2;
- x0 = srcPt[2].fX - srcPt[0].fX;
- y0 = srcPt[2].fY - srcPt[0].fY;
- x1 = srcPt[2].fX - srcPt[1].fX;
- y1 = srcPt[2].fY - srcPt[1].fY;
- x2 = srcPt[2].fX - srcPt[3].fX;
- y2 = srcPt[2].fY - srcPt[3].fY;
- /* check if abs(x2) > abs(y2) */
- if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
- SkFixed denom = SkMulDiv(x1, y2, x2) - y1;
- if (0 == denom) {
- return false;
- }
- a1 = SkFractDiv(SkMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
- } else {
- SkFixed denom = x1 - SkMulDiv(y1, x2, y2);
- if (0 == denom) {
- return false;
- }
- a1 = SkFractDiv(x0 - x1 - SkMulDiv(y0 - y1, x2, y2), denom);
- }
- /* check if abs(x1) > abs(y1) */
- if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) {
- SkFixed denom = y2 - SkMulDiv(x2, y1, x1);
- if (0 == denom) {
- return false;
- }
- a2 = SkFractDiv(y0 - y2 - SkMulDiv(x0 - x2, y1, x1), denom);
- } else {
- SkFixed denom = SkMulDiv(y2, x1, y1) - x2;
- if (0 == denom) {
- return false;
- }
- a2 = SkFractDiv(SkMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
- }
- // need to check if SkFixedDiv overflows...
- dst->fMat[kMScaleX] = SkFixedDiv(SkFractMul(a2, srcPt[3].fX) +
- srcPt[3].fX - srcPt[0].fX, scale.fX);
- dst->fMat[kMSkewY] = SkFixedDiv(SkFractMul(a2, srcPt[3].fY) +
- srcPt[3].fY - srcPt[0].fY, scale.fX);
- dst->fMat[kMPersp0] = SkFixedDiv(a2, scale.fX);
- dst->fMat[kMSkewX] = SkFixedDiv(SkFractMul(a1, srcPt[1].fX) +
- srcPt[1].fX - srcPt[0].fX, scale.fY);
- dst->fMat[kMScaleY] = SkFixedDiv(SkFractMul(a1, srcPt[1].fY) +
- srcPt[1].fY - srcPt[0].fY, scale.fY);
- dst->fMat[kMPersp1] = SkFixedDiv(a1, scale.fY);
- dst->fMat[kMTransX] = srcPt[0].fX;
- dst->fMat[kMTransY] = srcPt[0].fY;
- dst->fMat[kMPersp2] = SK_Fract1;
- dst->setTypeMask(kUnknown_Mask);
- return true;
- }
- #else /* Scalar is float */
- static inline bool checkForZero(float x) {
- return x*x == 0;
- }
- static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) {
- float x = 1, y = 1;
- SkPoint pt1, pt2;
- if (count > 1) {
- pt1.fX = poly[1].fX - poly[0].fX;
- pt1.fY = poly[1].fY - poly[0].fY;
- y = SkPoint::Length(pt1.fX, pt1.fY);
- if (checkForZero(y)) {
- return false;
- }
- switch (count) {
- case 2:
- break;
- case 3:
- pt2.fX = poly[0].fY - poly[2].fY;
- pt2.fY = poly[2].fX - poly[0].fX;
- goto CALC_X;
- default:
- pt2.fX = poly[0].fY - poly[3].fY;
- pt2.fY = poly[3].fX - poly[0].fX;
- CALC_X:
- x = SkScalarDiv(SkScalarMul(pt1.fX, pt2.fX) +
- SkScalarMul(pt1.fY, pt2.fY), y);
- break;
- }
- }
- pt->set(x, y);
- return true;
- }
- bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst,
- const SkPoint& scale) {
- float invScale = 1 / scale.fY;
- dst->fMat[kMScaleX] = (srcPt[1].fY - srcPt[0].fY) * invScale;
- dst->fMat[kMSkewY] = (srcPt[0].fX - srcPt[1].fX) * invScale;
- dst->fMat[kMPersp0] = 0;
- dst->fMat[kMSkewX] = (srcPt[1].fX - srcPt[0].fX) * invScale;
- dst->fMat[kMScaleY] = (srcPt[1].fY - srcPt[0].fY) * invScale;
- dst->fMat[kMPersp1] = 0;
- dst->fMat[kMTransX] = srcPt[0].fX;
- dst->fMat[kMTransY] = srcPt[0].fY;
- dst->fMat[kMPersp2] = 1;
- dst->setTypeMask(kUnknown_Mask);
- return true;
- }
- bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst,
- const SkPoint& scale) {
- float invScale = 1 / scale.fX;
- dst->fMat[kMScaleX] = (srcPt[2].fX - srcPt[0].fX) * invScale;
- dst->fMat[kMSkewY] = (srcPt[2].fY - srcPt[0].fY) * invScale;
- dst->fMat[kMPersp0] = 0;
- invScale = 1 / scale.fY;
- dst->fMat[kMSkewX] = (srcPt[1].fX - srcPt[0].fX) * invScale;
- dst->fMat[kMScaleY] = (srcPt[1].fY - srcPt[0].fY) * invScale;
- dst->fMat[kMPersp1] = 0;
- dst->fMat[kMTransX] = srcPt[0].fX;
- dst->fMat[kMTransY] = srcPt[0].fY;
- dst->fMat[kMPersp2] = 1;
- dst->setTypeMask(kUnknown_Mask);
- return true;
- }
- bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst,
- const SkPoint& scale) {
- float a1, a2;
- float x0, y0, x1, y1, x2, y2;
- x0 = srcPt[2].fX - srcPt[0].fX;
- y0 = srcPt[2].fY - srcPt[0].fY;
- x1 = srcPt[2].fX - srcPt[1].fX;
- y1 = srcPt[2].fY - srcPt[1].fY;
- x2 = srcPt[2].fX - srcPt[3].fX;
- y2 = srcPt[2].fY - srcPt[3].fY;
- /* check if abs(x2) > abs(y2) */
- if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
- float denom = SkScalarMulDiv(x1, y2, x2) - y1;
- if (checkForZero(denom)) {
- return false;
- }
- a1 = SkScalarDiv(SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
- } else {
- float denom = x1 - SkScalarMulDiv(y1, x2, y2);
- if (checkForZero(denom)) {
- return false;
- }
- a1 = SkScalarDiv(x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2), denom);
- }
- /* check if abs(x1) > abs(y1) */
- if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) {
- float denom = y2 - SkScalarMulDiv(x2, y1, x1);
- if (checkForZero(denom)) {
- return false;
- }
- a2 = SkScalarDiv(y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1), denom);
- } else {
- float denom = SkScalarMulDiv(y2, x1, y1) - x2;
- if (checkForZero(denom)) {
- return false;
- }
- a2 = SkScalarDiv(SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
- }
- float invScale = 1 / scale.fX;
- dst->fMat[kMScaleX] = SkScalarMul(SkScalarMul(a2, srcPt[3].fX) +
- srcPt[3].fX - srcPt[0].fX, invScale);
- dst->fMat[kMSkewY] = SkScalarMul(SkScalarMul(a2, srcPt[3].fY) +
- srcPt[3].fY - srcPt[0].fY, invScale);
- dst->fMat[kMPersp0] = SkScalarMul(a2, invScale);
- invScale = 1 / scale.fY;
- dst->fMat[kMSkewX] = SkScalarMul(SkScalarMul(a1, srcPt[1].fX) +
- srcPt[1].fX - srcPt[0].fX, invScale);
- dst->fMat[kMScaleY] = SkScalarMul(SkScalarMul(a1, srcPt[1].fY) +
- srcPt[1].fY - srcPt[0].fY, invScale);
- dst->fMat[kMPersp1] = SkScalarMul(a1, invScale);
- dst->fMat[kMTransX] = srcPt[0].fX;
- dst->fMat[kMTransY] = srcPt[0].fY;
- dst->fMat[kMPersp2] = 1;
- dst->setTypeMask(kUnknown_Mask);
- return true;
- }
- #endif
- typedef bool (*PolyMapProc)(const SkPoint[], SkMatrix*, const SkPoint&);
- /* Taken from Rob Johnson's original sample code in QuickDraw GX
- */
- bool SkMatrix::setPolyToPoly(const SkPoint src[], const SkPoint dst[],
- int count) {
- if ((unsigned)count > 4) {
- SkDebugf("--- SkMatrix::setPolyToPoly count out of range %dn", count);
- return false;
- }
- if (0 == count) {
- this->reset();
- return true;
- }
- if (1 == count) {
- this->setTranslate(dst[0].fX - src[0].fX, dst[0].fY - src[0].fY);
- return true;
- }
- SkPoint scale;
- if (!poly_to_point(&scale, src, count) ||
- SkScalarNearlyZero(scale.fX) ||
- SkScalarNearlyZero(scale.fY)) {
- return false;
- }
- static const PolyMapProc gPolyMapProcs[] = {
- SkMatrix::Poly2Proc, SkMatrix::Poly3Proc, SkMatrix::Poly4Proc
- };
- PolyMapProc proc = gPolyMapProcs[count - 2];
- SkMatrix tempMap, result;
- tempMap.setTypeMask(kUnknown_Mask);
- if (!proc(src, &tempMap, scale)) {
- return false;
- }
- if (!tempMap.invert(&result)) {
- return false;
- }
- if (!proc(dst, &tempMap, scale)) {
- return false;
- }
- if (!result.setConcat(tempMap, result)) {
- return false;
- }
- *this = result;
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////
- void SkMatrix::dump() const {
- // Note: We don't use this so it's #if 0'd out. If turned back on, there
- // is an #ifdef parsing difference between gcc and msvc where msvc incorrectly
- // allows a missing #endif. Attempts to reconcile proved unfruitful thus we
- // just turned it off.
- #if 0
- // ensure the fTypeMask is up2date
- (void)this->getType();
- #ifdef SK_DEBUG
- int mask = this->computeTypeMask();
- SkASSERT(mask == fTypeMask);
- #endif
- #ifdef SK_CAN_USE_FLOAT
- SkDebugf("[%8.4f %8.4f %8.4f] [%8.4f %8.4f %8.4f] [%8.4f %8.4f %8.4f] %xn",
- #ifdef SK_SCALAR_IS_FLOAT
- fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5],
- fMat[6], fMat[7], fMat[8], fTypeMask);
- #else
- SkFixedToFloat(fMat[0]), SkFixedToFloat(fMat[1]), SkFixedToFloat(fMat[2]),
- SkFixedToFloat(fMat[3]), SkFixedToFloat(fMat[4]), SkFixedToFloat(fMat[5]),
- SkFractToFloat(fMat[6]), SkFractToFloat(fMat[7]), SkFractToFloat(fMat[8]),
- fTypeMask);
- #endif
- #endif
- #endif
- }
- ///////////////////////////////////////////////////////////////////////////////
- #ifdef SK_DEBUG
- void SkMatrix::UnitTest() {
- #ifdef SK_SUPPORT_UNITTEST
- SkMatrix mat, inverse, iden1, iden2;
- mat.reset();
- mat.setTranslate(SK_Scalar1, SK_Scalar1);
- mat.invert(&inverse);
- inverse.dump();
- iden1.setConcat(mat, inverse);
- iden1.dump();
- mat.setScale(SkIntToScalar(2), SkIntToScalar(2));
- mat.invert(&inverse);
- inverse.dump();
- iden1.setConcat(mat, inverse);
- iden1.dump();
- mat.setScale(SK_Scalar1/2, SK_Scalar1/2);
- mat.invert(&inverse);
- inverse.dump();
- iden1.setConcat(mat, inverse);
- iden1.dump();
- SkASSERT(iden1.isIdentity());
- mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0);
- mat.postRotate(SkIntToScalar(25));
- SkASSERT(mat.invert(NULL));
- mat.invert(&inverse);
- iden1.setConcat(mat, inverse);
- iden2.setConcat(inverse, mat);
- iden1.dump();
- // SkASSERT(iden1.isIdentity());
- iden2.dump();
- // SkASSERT(iden2.isIdentity());
- // rectStaysRect test
- {
- static const struct {
- SkScalar m00, m01, m10, m11;
- bool mStaysRect;
- }
- gRectStaysRectSamples[] = {
- { 0, 0, 0, 0, false },
- { 0, 0, 0, SK_Scalar1, false },
- { 0, 0, SK_Scalar1, 0, false },
- { 0, 0, SK_Scalar1, SK_Scalar1, false },
- { 0, SK_Scalar1, 0, 0, false },
- { 0, SK_Scalar1, 0, SK_Scalar1, false },
- { 0, SK_Scalar1, SK_Scalar1, 0, true },
- { 0, SK_Scalar1, SK_Scalar1, SK_Scalar1, false },
- { SK_Scalar1, 0, 0, 0, false },
- { SK_Scalar1, 0, 0, SK_Scalar1, true },
- { SK_Scalar1, 0, SK_Scalar1, 0, false },
- { SK_Scalar1, 0, SK_Scalar1, SK_Scalar1, false },
- { SK_Scalar1, SK_Scalar1, 0, 0, false },
- { SK_Scalar1, SK_Scalar1, 0, SK_Scalar1, false },
- { SK_Scalar1, SK_Scalar1, SK_Scalar1, 0, false },
- { SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, false }
- };
- for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) {
- SkMatrix m;
- m.reset();
- m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
- m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01);
- m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10);
- m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
- SkASSERT(m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
- }
- }
- #endif
- }
- #endif