Code/Resource
Windows Develop
Linux-Unix program
Internet-Socket-Network
Web Server
Browser Client
Ftp Server
Ftp Client
Browser Plugins
Proxy Server
Email Server
Email Client
WEB Mail
Firewall-Security
Telnet Server
Telnet Client
ICQ-IM-Chat
Search Engine
Sniffer Package capture
Remote Control
xml-soap-webservice
P2P
WEB(ASP,PHP,...)
TCP/IP Stack
SNMP
Grid Computing
SilverLight
DNS
Cluster Service
Network Security
Communication-Mobile
Game Program
Editor
Multimedia program
Graph program
Compiler program
Compress-Decompress algrithms
Crypt_Decrypt algrithms
Mathimatics-Numerical algorithms
MultiLanguage
Disk/Storage
Java Develop
assembly language
Applications
Other systems
Database system
Embeded-SCM Develop
FlashMX/Flex
source in ebook
Delphi VCL
OS Develop
MiddleWare
MPI
MacOS develop
LabView
ELanguage
Software/Tools
E-Books
Artical/Document
pffst.cpp
Package: shell.rar [view]
Upload User: xhy777
Upload Date: 2007-02-14
Package Size: 24088k
Code Size: 13k
Category:
Windows Kernel
Development Platform:
Visual C++
- /***************************************************************************
- *
- * INTEL Corporation Proprietary Information
- *
- *
- * Copyright (c) 1996 Intel Corporation.
- * All rights reserved.
- *
- ***************************************************************************
- */
- /*
- * jfdctfst.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values. The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef DCT_IFAST_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
- #endif
- /* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jfdctint.c for more details. However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * Again to save a few shifts, the intermediate results between pass 1 and
- * pass 2 are not upscaled, but are represented only to integral precision.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13. This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
- #define CONST_BITS 8
- /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
- #if CONST_BITS == 8
- #define FIX_0_382683433 98 /* FIX(0.382683433) */
- #define FIX_0_541196100 139 /* FIX(0.541196100) */
- #define FIX_0_707106781 181 /* FIX(0.707106781) */
- #define FIX_1_306562965 334 /* FIX(1.306562965) */
- #else
- #define FIX_0_382683433 FIX(0.382683433)
- #define FIX_0_541196100 FIX(0.541196100)
- #define FIX_0_707106781 FIX(0.707106781)
- #define FIX_1_306562965 FIX(1.306562965)
- #endif
- /* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
- // The assembly version makes this compromise.
- //#ifndef USE_ACCURATE_ROUNDING
- //#undef DESCALE
- //#define DESCALE(x,n) RIGHT_SHIFT(x, n)
- //#endif
- #define DCTWIDTH 32
- #define DATASIZE 4
- /* Multiply a DCTELEM variable by an INT32 constant, and immediately
- * descale to yield a DCTELEM result.
- */
- #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
- /*
- * Perform the forward DCT on one block of samples.
- */
- GLOBAL(void)
- pfdct8x8aan (DCTELEM * data)
- {
- DCTELEM tmp4, tmp6, tmp7;
- int counter;
- __asm{
- /* Pass 1: process rows. */
- // dataptr = data;
- mov esi, [data]
- mov counter, 8
- // for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- // tmp0 = dataptr[0] + dataptr[7];
- // tmp7 = dataptr[0] - dataptr[7];
- // tmp1 = dataptr[1] + dataptr[6];
- // tmp6 = dataptr[1] - dataptr[6];
- // tmp2 = dataptr[2] + dataptr[5];
- // tmp5 = dataptr[2] - dataptr[5];
- // tmp3 = dataptr[3] + dataptr[4];
- // tmp4 = dataptr[3] - dataptr[4];
- StartRow:
- mov eax, [esi][DATASIZE*0]
- mov ebx, [esi][DATASIZE*7]
- mov edx, eax
- add eax, ebx ; eax = tmp0
- sub edx, ebx ; edx = tmp7
- mov ebx, [esi][DATASIZE*3]
- mov ecx, [esi][DATASIZE*4]
- mov edi, ebx
- add ebx, ecx ; ebx = tmp3
- sub edi, ecx ; edi = tmp4
- mov tmp4, edi
- mov tmp7, edx
- /* Even part */
- // tmp10 = tmp0 + tmp3;
- // tmp13 = tmp0 - tmp3;
- // tmp11 = tmp1 + tmp2;
- // tmp12 = tmp1 - tmp2;
- mov ecx, eax
- add eax, ebx ; eax = tmp10
- sub ecx, ebx ; ecx = tmp13
- mov edx, [esi][DATASIZE*1]
- mov edi, [esi][DATASIZE*6]
- mov ebx, edx
- add edx, edi ; edx = tmp1
- sub ebx, edi ; ebx = tmp6
- mov tmp6, ebx
- push ebp
- mov edi, [esi][DATASIZE*2]
- mov ebp, [esi][DATASIZE*5]
- mov ebx, edi
- add edi, ebp ; edi = tmp2
- sub ebx, ebp ; ebx = tmp5
- mov ebp, edx
- add edx, edi ; edx = tmp11
- sub ebp, edi ; ebp = tmp12
- // dataptr[0] = tmp10 + tmp11; /* phase 3 */
- // dataptr[4] = tmp10 - tmp11;
- mov edi, eax
- add eax, edx ; eax = tmp10 + tmp11
- sub edi, edx ; edi = tmp10 - tmp11
- add ebp, ecx ; ebp = tmp12 + tmp13
- // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
- imul ebp, FIX_0_707106781 ; ebp = z1
- sar ebp, 8
- mov [esi][DATASIZE*0], eax
- // dataptr[2] = tmp13 + z1; /* phase 5 */
- // dataptr[6] = tmp13 - z1;
- mov eax, ecx
- add ecx, ebp
- sub eax, ebp
- pop ebp
- mov [esi][DATASIZE*4], edi
- mov [esi][DATASIZE*2], ecx
- mov [esi][DATASIZE*6], eax
- mov edi, tmp4
- /* Odd part */
- // tmp10 = tmp4 + tmp5; /* phase 2 */
- // tmp11 = tmp5 + tmp6;
- // tmp12 = tmp6 + tmp7;
- mov ecx, tmp6
- mov edx, tmp7
- add edi, ebx ; edi = tmp10
- add ebx, ecx ; ebx = tmp11
- // z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
- // z11 = tmp7 + z3; /* phase 5 */
- // z13 = tmp7 - z3;
- imul ebx, FIX_0_707106781 ; ebx = z3
- sar ebx, 8
- add ecx, edx ; ecx = tmp12
- mov eax, edx
- add edx, ebx ; edx = z11
- sub eax, ebx ; eax = z13
- mov ebx, edi
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- // z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
- // z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
- // z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
- imul ebx, FIX_0_541196100
- sar ebx, 8
- sub edi, ecx ; edi = tmp10 - tmp12
- imul edi, FIX_0_382683433 ; edi = z5
- sar edi, 8
- add esi, 32
- imul ecx, FIX_1_306562965
- sar ecx, 8
- add ebx, edi ; ebx = z2
- add ecx, edi ; ecx = z4
- mov edi, eax
- // dataptr[5] = z13 + z2; /* phase 6 */
- // dataptr[3] = z13 - z2;
- // dataptr[1] = z11 + z4;
- // dataptr[7] = z11 - z4;
- add eax, ebx ; eax = z13 + z2
- sub edi, ebx ; edi = z13 - z2
- mov [esi][DATASIZE*5-32], eax
- mov ebx, edx
- mov [esi][DATASIZE*3-32], edi
- add edx, ecx ; edx = z11 + z4
- mov [esi][DATASIZE*1-32], edx
- sub ebx, ecx ; ebx = z11 - z4
- mov ecx, counter
- mov [esi][DATASIZE*7-32], ebx
- dec ecx
- mov counter, ecx
- jnz StartRow
- // dataptr += DCTSIZE; /* advance pointer to next row */
- // }
- /* Pass 2: process columns.*/
- // dataptr = data;
- mov esi, [data]
- mov counter, 8
- // for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- // tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- // tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- // tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- // tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- // tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- // tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- // tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- // tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
- StartCol:
- mov eax, [esi][DCTWIDTH*0]
- mov ebx, [esi][DCTWIDTH*7]
- mov edx, eax
- add eax, ebx ; eax = tmp0
- sub edx, ebx ; edx = tmp7
- mov ebx, [esi][DCTWIDTH*3]
- mov ecx, [esi][DCTWIDTH*4]
- mov edi, ebx
- add ebx, ecx ; ebx = tmp3
- sub edi, ecx ; edi = tmp4
- mov tmp4, edi
- mov tmp7, edx
- /* Even part */
- // tmp10 = tmp0 + tmp3;
- // tmp13 = tmp0 - tmp3;
- // tmp11 = tmp1 + tmp2;
- // tmp12 = tmp1 - tmp2;
- mov ecx, eax
- add eax, ebx ; eax = tmp10
- sub ecx, ebx ; ecx = tmp13
- mov edx, [esi][DCTWIDTH*1]
- mov edi, [esi][DCTWIDTH*6]
- mov ebx, edx
- add edx, edi ; edx = tmp1
- sub ebx, edi ; ebx = tmp6
- mov tmp6, ebx
- push ebp
- mov edi, [esi][DCTWIDTH*2]
- mov ebp, [esi][DCTWIDTH*5]
- mov ebx, edi
- add edi, ebp ; edi = tmp2
- sub ebx, ebp ; ebx = tmp5
- mov ebp, edx
- add edx, edi ; edx = tmp11
- sub ebp, edi ; ebp = tmp12
- // dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
- // dataptr[DCTSIZE*4] = tmp10 - tmp11;
- mov edi, eax
- add eax, edx ; eax = tmp10 + tmp11
- sub edi, edx ; edi = tmp10 - tmp11
- add ebp, ecx ; ebp = tmp12 + tmp13
- // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
- imul ebp, FIX_0_707106781 ; ebp = z1
- sar ebp, 8
- mov [esi][DCTWIDTH*0], eax
- // dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
- // dataptr[DCTSIZE*6] = tmp13 - z1;
- mov eax, ecx
- add ecx, ebp
- sub eax, ebp
- pop ebp
- mov [esi][DCTWIDTH*4], edi
- mov [esi][DCTWIDTH*2], ecx
- mov [esi][DCTWIDTH*6], eax
- mov edi, tmp4
- /* Odd part */
- // tmp10 = tmp4 + tmp5; /* phase 2 */
- // tmp11 = tmp5 + tmp6;
- // tmp12 = tmp6 + tmp7;
- mov ecx, tmp6
- mov edx, tmp7
- add edi, ebx ; edi = tmp10
- add ebx, ecx ; ebx = tmp11
- // z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
- // z11 = tmp7 + z3; /* phase 5 */
- // z13 = tmp7 - z3;
- imul ebx, FIX_0_707106781 ; ebx = z3
- sar ebx, 8
- add ecx, edx ; ecx = tmp12
- mov eax, edx
- add edx, ebx ; edx = z11
- sub eax, ebx ; eax = z13
- mov ebx, edi
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- // z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
- // z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
- // z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
- imul ebx, FIX_0_541196100
- sar ebx, 8
- sub edi, ecx ; edi = tmp10 - tmp12
- imul edi, FIX_0_382683433 ; edi = z5
- sar edi, 8
- add esi, 4
- imul ecx, FIX_1_306562965
- sar ecx, 8
- add ebx, edi ; ebx = z2
- add ecx, edi ; ecx = z4
- mov edi, eax
- // dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
- // dataptr[DCTSIZE*3] = z13 - z2;
- // dataptr[DCTSIZE*1] = z11 + z4;
- // dataptr[DCTSIZE*7] = z11 - z4;
- add eax, ebx ; eax = z13 + z2
- sub edi, ebx ; edi = z13 - z2
- mov [esi][DCTWIDTH*5-4], eax
- mov ebx, edx
- mov [esi][DCTWIDTH*3-4], edi
- add edx, ecx ; edx = z11 + z4
- mov [esi][DCTWIDTH*1-4], edx
- sub ebx, ecx ; ebx = z11 - z4
- mov ecx, counter
- mov [esi][DCTWIDTH*7-4], ebx
- dec ecx
- mov counter, ecx
- jnz StartCol
- } //end asm
- // dataptr++; /* advance pointer to next column */
- // }
- }
- #endif /* DCT_ISLOW_SUPPORTED */